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Editorial

The fundamental role of pattern recognition for
gene-expression/microarray data in bioinformatics

High-throughput measurement technologies, such as
cDNA and oligonucleotide microarrays, are changing the
practice of biology and medicine. Microarrays provide si-
multaneous expression (RNA abundance) measurements
for thousands of genes and thereby facilitate analysis of
the complex multivariate relations among genes. This new
capability is being used to promote two major goals of
functional genomics: (1) to use gene expression to classify
disease on a molecular level; and (2) to discover genes
that determine specific cellular phenotypes (diseases) and
model their activity in a way that provides quantitative dis-
crimination between normal and abnormal behavior. These
goals correspond to diagnosing the presence or type of
disease and to developing therapies based on the disruption
or mitigation of aberrant gene function contributing to the
pathology of a disease. Developing diagnostic tools at the
RNA level involves designing expression-based classifiers
to discriminate differences in cell state, such as one type of
cancer or another. Engineering therapeutic tools involves
synthesizing nonlinear dynamical networks to model gene
regulation and deriving intervention strategies to modify
network behavior. The classification methods of pattern
recognition are clearly associated with diagnosis, but they
also apply to therapy because prediction methods are used
to identify gene–gene and gene–phenotype relations in net-
work modeling. In discrete models, prediction of a target-
gene value is given via a function of some predictor-gene
values. This function is a multinomial classifier.
Expression-based microarrays phenotype classification

requires designing a classifier that takes a vector of gene
expression levels as input and outputs a class label to
predict the class containing the input vector. Classifica-
tion can be between different kinds of cancer, different
stages of tumor development, different prognoses, or a
host of such differences. Much early work in microar-
ray phenotype classification has involved cancer, and
many cancers have been considered. Classifier design in-
volves assessing expression levels from RNA obtained
from different tissues with microarrays, determining genes
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whose expression levels can be used as classifier variables,
and then applying a rule to design the classifier from the
sample microarray data. Expression values have randomness
arising from both biological and experimental variability.
There has been an explosion of papers using a host of

classification techniques; however, there has not been a
concomitant effort at dealing with the daunting theoretical
and procedural pattern-recognition issues raised by high-
throughput classification. The problem: what is one to do
when faced with thousands of potential features (gene ex-
pressions) and samples consisting of less than a hundred
data points (microarrays)? This extreme disparity impacts
the major aspects of classifier design: choosing a classifica-
tion rule, error estimation, and feature selection. Owing to
a lack of attention to this small-sample problem, the value
of many results reported in the literature cannot be ascer-
tained. What is one to make of using a complex classifier
like CART or of using 50 features when the sample size is
30? The Vapnik–Chervonenkis theory should at least make
scientists wary of using anything beyond very simple classi-
fication rules and a handful of features with the kinds of ex-
tremely small samples commonplace in microarray experi-
ments[1]. The problem is not mitigated by obtaining a small
error estimate, because in the vast majority of cases error
estimation is achieved with some kind of cross-validation,
which is not suitable for very small samples owing to its high
variability in such circumstances. The imprecision of cross-
validation is exacerbated by complex classification rules and
large numbers of features.
The error of a classifier can be decomposed into the sum

of the Bayes error for the feature-label distribution plus the
error increase owing to constraining the form of the classi-
fier plus the error increase owing to designing the classifier
from sample data:eclassifier= eBayes+ econst+ edesign.
The Bayes error is outside the control of the designer;
the choice of classification rule represents the engineering
contribution. One would like to constrain classifier design
to reduceedesignbut at the same time not haveeconst too
high. Much outstanding work in pattern recognition has
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focused on bounding the expected design error in terms
of the complexity of the classification rule and the sample
size[2]. For the small samples confronting bioinformatics,
the sample size is usually not sufficiently large to make the
bound useful. Nonetheless, they tend to tell us thatedesign
is such an overriding problem that we should use very
simple classifiers, even at the risk of increasingeconst.
Basically, if the feature-label distribution is sufficiently
complicated to makeeconst unacceptably high, then the
classification problem is intractable because the paucity of
data will not allow good design. Even in the case of sim-
ple linear classifiers, regularization is advised. Ultimately
the issue is how a classification rule behaves relative to
distributional complexity for small samples. In this vein,
there is evidence to support the heuristic that, if a complex
classification rule provides good results, then with strong
likelihood the task could have been accomplished with a
very simple classifier [3]. The converse, however, is not
true. Applying a complex classifier to an easily separable
distribution will likely have much worse results than those
obtained with a simple classifier, because in this case,
econst is small for both rules butedesign is large for the
complex rule. We note that many practical problems of
small-sample classification have long been known [4].
Owing to the huge numbers of variables in genomic prob-

lems, feature selection is a must. The problem is inherently
combinatoric: to be assured of obtaining the best feature set
of a certain size taken from a collection of potential fea-
tures, one must test all features sets of the given size [5].
Except for very small feature sets, this is impossible. As the
number of features grows, the error of a designed classifier
commonly decreases and then increases with an increasing
number of features. Owing to this “peaking phenomenon,”
one cannot use all available features, or even more than a
handful of them in some cases. Analysis of feature selec-
tion is usually based on simulation due to the difficulty of
obtaining analytic results [6,7]. A central issue is to de-
termine an optimal number of features for a classification
rule and feature-label distribution relative to the sample
size [8].
Perhaps, the area that has recently been the most over-

looked in small-sample classification is error estimation.
This is unfortunate because the scientific value of a classi-
fier lies in the accuracy and precision of its error estimate.
In the 1970s and 1980s, a decent amount of investigation
went into error estimation [9], but thereafter it seems to have
waned. Particularly troublesome is the extent to which cross-
validation methods have been applied to small samples with-
out justification, and often without caveat, even though their
high variability is well known [2]. Recent studies demon-
strate that cross-validation provides excessively imprecise
error measurement [10] and poor feature-set ranking [11].
Significantly better performance is achieved by bootstrap
[12] and the recently introduced bolstering [13], which has
extensive roots within pattern recognition and is much more
computationally efficient than re-sampling methods.

We next discuss clustering, which is being applied ex-
tensively in bioinformatics. Data clustering has historically
lacked the two fundamental characteristics of pattern clas-
sification: (1) the error of a proposed classifier is estimated
from data; and (2) given a family of classifiers from which
to choose, a classification rule is used to obtain a classifier
in the family. Of the two characteristics, the first is perhaps
more basic, since without a decent error estimate, the worth
of a classifier is unknown. Many validation techniques have
been proposed for evaluating clustering results, but these are
generally not set in the context of an encompassing proba-
bilistic theory and therein based on an error criterion. The
issue is serious. It goes to the epistemological foundations
of clustering and therefore to the meaning of the conclu-
sions based on clustering algorithms. Jain et al.[14] write.
“Clustering is a subjective process; the same set of data
items often needs to be partitioned differently for different
applications. This subjectivity makes the process of cluster-
ing difficult.” Their warning should be heeded. Clustering
is very difficult and should not be used without great pru-
dence. But the problem is much deeper. Science is not sub-
jective. It must involve a model leading to predictions that
can be inter-subjectively tested. This is the role played by
the error of a classifier, but that entails a probabilistic the-
ory. To what is the output of a clustering algorithm to be
compared, and how is the comparison to be measured so as
to quantify predictability?
Whereas a classifier operates on a point to produce a label,

a clustering algorithm operates on a set of points to produce
a partition of the point set. The probabilistic theory of classi-
fication is based on a classifier being viewed as an operator
on random points (vectors). A corresponding probabilistic
theory of clustering would view a clustering algorithm as
an operator on random point sets. Moreover, whereas the
predictive capability of a classifier is measured by the deci-
sions it yields regarding the labeling of random points, the
predictive capability of a clustering algorithm must be mea-
sured by the decisions it yields regarding the partitioning of
random point sets. Once this is recognized, the path to the
development of error estimators for clustering accuracy and
rules to learn clustering operators from data is open and the
entire issue can be placed on firm epistemological ground
[15]. This does not close the matter. While the manner in
which clustering is used (operating on point sets) dictates a
probabilistic theory in the context of random sets, new ideas
and methods are required to employ the theory in scientific
applications. This is not a trivial task. Whereas classification
issues can be phrased in terms of the probability distribu-
tion function of a random vector, random point sets cannot
be so easily modeled [16].
Given its key role in medical diagnosis and therapy, pat-

tern recognition is poised to enter an exciting new phase,
both in terms of application and theory. As briefly discussed,
the huge imbalance between the numbers of features and
the sample sizes requires new algorithms and error esti-
mators whose small-sample properties are appreciated due
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to either mathematical theory or extensive simulation stud-
ies. One can confidently speculate that application advances
will utilize biological knowledge in the design and choice
of pattern-recognition procedures. The overall endeavor will
provide challenging problems for decades and expand both
theory and application immensely, perhaps in ways impos-
sible to currently envision.
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