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Knowing the roles of mathematics and computation in experimental science is impor-
tant for computational biology because these roles determine to a great extent how
research in this field should be pursued and how it should relate to biology in general.
The present paper examines the epistemology of computational biology from the per-
spective of modern science, the underlying principle of which is that a scientific theory
must have two parts: (1) a structural model, which is a mathematical construct that
aims to represent a selected portion of physical reality and (2) a well-defined procedure
for relating consequences of the model to quantifiable observations. We also explore the
contingency and creative nature of a scientific theory. Among the questions considered
are: Can computational biology form the theoretical core of biology? What is the basis,
if any, for choosing one particular model over another? And what is the role of computa-
tion in science, and in biology in particular? We examine how this broad epistemological
framework applies to important statistical methodologies pertaining to computational
biology, such as expression-based phenotype classification, gene regulatory networks,
and clustering. We consider classification in detail, as the epistemological issues raised
by classification are related to all computational-biology topics in which statistical pre-
diction plays a key role. We pay particular attention to classifier-model validity and its
relation to estimation rules.
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1. Introduction

The advent of high-throughput technologies for genomics and proteomics has
facilitated multivariate modeling in areas such as expression-based phenotype
classification,1–5 gene prediction,6,7 gene regulatory networks,8–12 and data
clustering.13–15 Given the large numbers of variables resulting from expression mea-
surements, the relative paucity of data in comparison to the variable sets, and the
many proposed inference algorithms for classifiers and networks, it is incumbent
that the epistemological issue be raised in regard to computational biology: What
is the meaning of computational biology in biological science? Computational biol-
ogy utilizes statistics, computation, and mathematical structures such as directed
graphs and differential equations, but these are more than an ad hoc collection of
algorithms, methods, and theorems. In the context of computational biology, these
purely mathematical entities play a scientific role and their meaning must be under-
stood in scientific terms. Its epistemology determines how computational biology
should be pursued and how it relates to biology.

We will examine the epistemology of computational biology on two levels: first,
from the general perspective of modern science, the conception of which has evolved
mainly in response to the monumental achievements in physics in the first half of
the 20th century, and second, relative to the particular issue of classification, which
holds great potential for the application of statistical decision making to molecular-
based disease diagnosis. While a general scientific epistemology is important, it is
also important to relate the general principles to specific situations. Not only is
classification important in its own right; the epistemological issues raised by classi-
fication, such as the validity of a classifier model, are related to all topics in which
statistical prediction plays a key role, including clustering and inference of gene
regulatory networks, whose specific epistemological issues we also consider, though
in less detail. We are particularly interested in providing a formal epistemological
characterization of the validity of a classification model.

The need for careful epistemology in computational biology has been highlighted
by the recent advances in high-throughput technologies and the consequent effort
to deal with the extremely high-dimensional data sets produced by the technology,
concurrent with very small samples. With the onset of microarray-based classifi-
cation, one of us (E. Dougherty) considered the limiting impact of large numbers
of genes and small numbers of microarrays on classifier design, feature selection,
and error estimation, and wrote, “Owing to the limited number of microarrays
typically used in these studies, serious issues arise with respect to the design, per-
formance, and analysis of classifiers based on microarray data.”16 Mehta et al. have
recently critiqued the application of statistical methods to high-dimensional biology,
in particular, with respect to microarray-based analysis, and have cautioned, “Many
papers aimed at the high-dimensional biology community describe the development
or application of statistical techniques. The validity of many of these is questionable,
and a shared understanding about the epistemological foundations of the statistical
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methods themselves seems to be lacking.”17 They then go on to provide a set of
basic recommendations regarding sound statistical methodology in the context of
microarray data analysis.

The present article aims to go deeper into the epistemological foundation of
computational biology and its role in constituting the theoretical core of biology,
in analogy to the way that mathematical theories provided that core for physics in
the 20th century. Except for supporting the dual roles of mathematical modeling
and predictive experimentation as the epistemological foundation of computational
biology, we do not advocate any specific philosophy of science. We provide the views
of numerous scientists, among whom there are significant disagreements, but whose
views converge with regard to the general necessity of the model-experiment dual-
ity. We expect that different readers will interpret what we say in different lights,
depending on their own predilections, in particular with regard to the meaning of
the model-experiment duality and how the duality is to be manifested in practice.
These are deep, perplexing issues and differing views are inevitable. Like the intro-
duction of any breakthrough observation technology, high-throughput, multimodal
technologies for biology will change the conception of the subject. These changes will
be accompanied by a debate as to their meaning and how they impact understand-
ing. Our particular interest is translation of knowledge into medical application
and in this regard we quote from a recent article resulting from the Multimodal
Bio-Medical Systems Workshop held in 2004 at the National Library of Medicine:

The life sciences rely on predictive models. Serious thought needs to be
devoted to their epistemology. Models should include existing biological
information, suitable mathematical formulas, and necessary data. Predic-
tive mathematical models are necessary to move biology in the direction
of a predictive science. They are also necessary to the application of engi-
neering methods to translate biological knowledge into therapies with a
mathematical and computational basis.18

The practical consequences of an inattention to epistemology are real and
already showing themselves in questions regarding the efficacy of microarray-based
classification.19,20 Of great concern are conclusions based on error estimates arising
from small samples, an issue fundamental to the epistemology of classification.21,22

Our hope is that this paper will provoke practicing scientists to take the matter of
epistemology seriously and to undertake earnest deliberations.

2. The Nature of a Scientific Theory

Galileo Galilei is usually considered the father of modern science. He proposed a
conception of knowledge in which there is an economy of constructive terminology
and a dependence of scientific propositions on judicious observation. To Galileo,
science owes the concept of a mathematical model. Our understanding of models
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and their relationship to nature is different today than in his time; nonetheless, the
use of mathematical equations to describe abstract relationships between selected
quantifiable variables is mainly due to Galileo.

A model is a logical, and therefore mental, construct in which the variables and
relations between the variables represent a selected portion of physical reality. It is
a skeleton that reflects the salient features of a physical situation of interest to the
scientist. It is a conceptualization of a part of nature, a logical apparatus that bears
a connection to nature through the scientist’s ability to utilize it as a determining
factor in the construction of experiments and the prediction of outcomes result-
ing from those experiments. The test of a model is its accuracy in the prediction
of sensory events, such as the movement of a needle on a meter. At issue is the
concurrence of observed and predicted measurements. A model gains its legitimacy
from data. New data may reveal the inadequacy of a model. Thus, a model is a
contingent hypothesis that perpetually stands open to rejection should its predic-
tions fail. Writes Karl Popper, “The acceptance by science of a law or a theory is
tentative only; which is to say that all laws and theories are conjectures, or ten-
tative hypotheses... We may reject a law or theory on the basis of new evidence,
without necessarily discarding the old evidence which originally led us to accept
it.”23 The epistemology and method of science are united in the model concept.
Science ceases to be if the mathematical model is separated from the experimental
method.

Among models there is a kind of survival of the fittest. Indeed, the terminol-
ogy of struggle has been used in the philosophy of science. Philipp Frank states,
“Experience is responsible for the natural selection that determines which system is
the fittest for survival and which has to be dropped.”24 Karl Popper agrees, “[The
scientific method’s] aim is not to save the lives of untenable systems but, on the
contrary, to select the one which is by comparison the fittest, by exposing them all
to the fiercest struggle for survival.”25

Classically, the scientist worked with models whose fundamental terms referred
to ideas whose origins lay in pre-scientific perceptual experience. Terms such as
“particle,” “wave,” and “force” were of this genre. Moreover, the frames of experi-
ence, such as Euclidean three-dimensional space and linear time, and the underlying
hypotheses concerning regularity, such as causality and continuity, had their ori-
gins in the commonplace perception of everyday phenomena. However, with the
advent of quantum mechanics and general relativity, understanding of the mathe-
matical apparatus changed. What became apparent was that the apparatus itself
was of prime importance with regard to organization and prediction, and that any
intuitive appreciation of this apparatus was secondary. In the words of James Jeans,

The final truth about phenomena resides in the mathematical description
of it; so long as there is no imperfection in this, our knowledge is complete.
We go beyond the mathematical formula at our own risk; we may find a
[nonmathematical] model or picture that helps us to understand it, but we
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have no right to expect this, and our failure to find such a model or picture
need not indicate that either our reasoning or our knowledge is at fault.26

Non-mathematical reasoning is useful for the scientist in exploratory thinking, but
it does not constitute the theoretical object of science, which is the mathematical
model. One might use a metaphor of observers holding lights on approaching trains
to make an intuitive point concerning relativity, but the theory lies properly within
the equations. Any attempt to force a non-mathematical understanding creates the
risk of having a diminished (or erroneous) scientific description. This results in the
substitution of readily “understandable” and often convincing descriptions in place
of strict scientific knowledge, which must take a mathematical form.

We cannot expect to have scientific knowledge within the categories of common-
place understanding because commonplace understanding is inadequate for quanti-
tative predictive models. Regarding the essential worth of a physical theory, Richard
Feynman writes,

It is whether or not the theory gives predictions that agree with experi-
ment. It is not a question of whether a theory is philosophically delightful,
or easy to understand, or perfectly reasonable from the point of view of
common sense. The theory of quantum electrodynamics describes Nature
as absurd from the point of view of common sense. And it agrees fully with
experiment. So I hope you can accept Nature as She is — absurd.27

The absurdity of which Feynman speaks is not the absurdity of Nature in and of
herself; rather, it is an absurdity relative to the relation between human rationality
and Nature. Indeed, why should one expect natural phenomena to be describable in
terms concordant with common-sense understanding? Human intuition and vocab-
ulary have not developed with reference to any experience at the subatomic level
or the speed of light, nor have they developed with reference to the kinds of mas-
sive nonlinear dynamical systems encountered in biology. The very recent ability to
observe and measure complex, out of the ordinary phenomena necessitates scientific
characterizations that go beyond what seems “reasonable” to ordinary understand-
ing. As a product of human thinking, a mathematical model is not psychologically
independent of human understanding; nevertheless, its validity rests solely with its
ability to predict experimental outcomes, not its agreement with common sense.

One might object to the fundamental role of prediction by asking whether an
investigation not be called “science” if one simply categorizes observations based
on measurements. Certainly such categories represent a form of knowledge and
their assembly, which can require great effort and ingenuity, is part of the scientific
enterprise, but they do not constitute scientific knowledge unless they are utilized
within some predictive framework. Scientific knowledge requires more. To use the
language of pragmatism, it concerns knowledge with a cash value. Feynman writes,
“Knowledge is of no real value if all you can tell me is what happened yesterday.”28

Scientific knowledge is worldly knowledge in that it points into the future by making
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predictions about events that have yet to take place. It is contingent, always await-
ing the possibility of its invalidation. Its truth or falsity lies in the verity of its
predictions and, since these predictions depend upon the outcomes of experiments,
ultimately the validity of scientific knowledge is relative to the methodology of veri-
fication. William James states, “Truth happens to an idea. It becomes true, is made
true by events. Its verity is in fact an event, a process, the process namely of its
verifying itself, its verification. Its validity is the process of its validation.”29

To place the entire matter into a practical clinical setting, consider a physician
who applies the St. Gallen criteria to a patient with lymph-node-positive breast
cancer to predict metastasis-free survival and based upon the prediction decides
whether the patient would benefit from adjuvant systemic treatment. The truth
of the physician’s idea [the criteria constituting the mathematical model] depends
upon events [survival or death] — or upon the statistics of the patient sample to
which the idea is applied. Step ahead a few years. A gene-expression signature for
the patient is put into a classifier model [idea] to predict metastasis-free survival and
thereby predict the benefit of adjuvant systemic treatment.30 The truth of the clas-
sifier model depends upon events. Now step into the not-too-distant future. Gene
and protein expressions relating directly to the patient’s tumor are measured, these
measurements are input into the shell of a gene-protein network model to individ-
ualize the network for the particular patient, and a computer applies the theory of
automatic control to the network to derive an optimal molecular-based treatment
regimen.31 This step ahead requires an explicit mathematical model possessing a
level of complexity far beyond what a human can handle; nevertheless, like today’s
decision model, its truth depends upon events relating to patient outcomes. More-
over, with network models in hand that can predict disease dynamics, technology
can make the application of scientific knowledge ever more productive: a device is
embedded in the patient to monitor the relevant gene and protein expressions, this
information is sent by wireless to a supercomputer that adjusts the network model
to changing conditions in real time and applies control theory to obtain a therapeu-
tic strategy, the details of the strategy are sent back to a nano-device embedded
in the patient, and the device dispenses the required treatment with the precise
composition and timing called for by the control algorithm. The greater scientific
knowledge in the foreseeable future has a greater cash value than the knowledge of
today, but in either case there is no cash value without prediction.

With all this emphasis on prediction, one might ask if there is more to pre-
diction than functional relations between variables that agree with experiment. Is
there causality? This is a subject with a long history, the philosophical debate over
causality in the modern world beginning with David Hume and Immanuel Kant.
Very briefly, Kant agrees with Hume that the law of causality is not a scientific
law; however, whereas for Hume, habit underlies our belief in causality, for Kant
causality is a form imposed on the data by the nature of the human mind. This is
certainly not the place to delve into the issue. We limit ourselves to a statement by
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Erwin Schroedinger, who writes, “It can never be decided experimentally whether
causality in nature is ‘true’ or ‘untrue.’ The relation of cause and effect, as Hume
pointed out long ago, is not something that we find in nature but is rather a char-
acteristic of the way in which we regard nature.” One is free to think, or not to
think, causally. In the end, the verity of a scientific theory depends on whether it
gives predictions that agree with experiment, not the way in which the scientist
regards nature, either psychologically or metaphysically.

How is one to check if a scientific theory gives predictions that agree with exper-
iment? Up until the 20th century the abstract symbols were assumed to be measur-
able in a straightforward manner. However, with the advent of Einstein’s general
theory of relativity, the terms of the purely mathematical structure no longer refer
to the immediate phenomena of human perception as they earlier had. Verification
of a system requires that the symbols be tied to observations by some semantic rules
that relate not to the general principles of the mathematical model themselves but
to conclusions drawn from the principles. In other words, the theory is checked
by testing measurable consequences of the theory. These operational definitions, as
they are called, are an intrinsic part of the theory, for without them there would be
no connection between the principles and observation. The demand for operational
definitions constitutes the positivistic requirement of science. The general principles
must have consequences that can be checked via their relation to sensory observa-
tions. The mathematical equations may relate abstract symbols, but there must be
a well-defined procedure for relating the consequences of the equations to quantifi-
able observations, such as the compression of a spring, the level of mercury in a
thermometer, or the mean intensity of a spot on a cDNA microarray resulting from
hybridized fluors. A scientific theory must have two parts: a structural model and
a set of operational definitions for its symbols. It is not a straightforward matter
to provide a suitable set of operational definitions, nor to even characterize what
it means to be suitable; nevertheless, the two-part scheme provides a necessary
general structure for a modern scientific theory.

Experimentation is no less important than the mathematical theory. Since a
model can only be verified to the extent that its symbols can be tied to observa-
tions in a predictive framework, the ability to design and perform suitable experi-
ments, including the availability of technology to make the desired measurements,
is mandatory. Limitations on experimentation can result in limitations on the com-
plexity of a theory or a restriction on the symbols and operations constituting
the theory. In a practical sense, the theorist and experimentalist must proceed in
close connection. The theory, to be validated, must not exceed the experimentalist’s
ability to conceive and perform appropriate experiments, and the experimentalist
cannot produce directly meaningful experiments unless they are designed with a
symbolic structure in mind. In the context of the uncertainty principle, modern
physics appears to have brought us beyond the situation of where the limitations
on observation are owing to insufficient experimental apparatus to the point where
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the limitations are unsurpassable in principle. In this vein, Erwin Schroedinger
writes, “It really is the ultimate purpose of all schemes and models to serve as
scaffolding for any observations that are at all conceivable.”32 He adds, “There
does not seem to be much sense in inquiring about the real existence of something,
if one is convinced that the effect through which the thing would manifest itself,
in case it existed, is certainly not observable.” In other words, without observable
effects due to an object, the object is not a subject of scientific inquiry. Charles
Pierce goes so far as to say that an object of our thought is indistinguishable
from its conceivable effects when he writes, “Consider what effects, that might
conceivably have practical bearings, we conceive the object of our conception to
have. Then our conception of these effects is the whole of our conception of the
object.”33

In his treatise on random geometrical measurements, Georges Matheron makes
the following statement that binds the theorist and experimenter together:

In general, the structure of an object is defined as the set of relationships
existing between elements or parts of the object. In order to experimentally
determine this structure, we must try, one after the other, each of the
possible relationships and examine whether or not it is verified. Of course,
the image constructed by such a process will depend to the greatest extent
on the choice made for the system of relationships considered possible.
Hence this choice plays a priori a constitutive role (in the Kantian meaning)
and determines the relative worth of the concept of structure at which we
will arrive.34

The experimenter, in choosing the universe of relationships to be examined, frames
at the outset the very kind of mathematical structure that can potentially result
because the experimenter chooses the manner in which Nature is to be probed. The
roots of this theorist-experimenter dialectic go back at least to Kant, who famously
stated, “A concept without a percept is empty; a percept without a concept is
blind.”35 An interpretation for the researcher might be, “A model without data is
empty; data without a model is blind.”

In the scientist’s choice of how Nature is to be probed, subjectivity enters
the scientific enterprise. A virtually unlimited number of experiments can be per-
formed and those relatively few actually performed by the scientific community are
somehow determined by psychological, cultural, and metaphysical considerations.
Schroedinger writes, “A selection has been made on which the present structure of
science is built. That selection must have been influenced by circumstances that
are other than purely scientific.”32 The selection is influenced by the interests and
goals of the investigator. These may be internal, such as ones desiring to alleviate
the suffering of cancer or ones driving interest to unlock the secrets of Nature at
the subatomic level, or they may be external, such as satisfying a granting agency
or furthering the interest of a certain group. Schroedinger emphasizes the emotive
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drive in scientific practice, as well as reinforcing the inherent pragmatism of science
when he writes, “The origin of science [is] without any doubt the very anthropo-
morphic necessity of man’s struggle for life.”32

3. Computational Biology and “The Final Truth
About Phenomena”

To the extent that computational biology provides mathematical models that can
be validated by experimentation, it contains, in the words of James Jeans, “the
final truth about [biological] phenomena.” What does it mean for a model to be
biological? Since the mathematical model consists of abstract symbols and relations
between the symbols, the biological nature of the model does not inhere in it alone.
Rather, it is phenomena that the model seeks to represent that determine the
biological nature of a scientific theory. The biology inheres in the experiments, or
perhaps more precisely, in the scientist’s perception of the experiments.

For the moment, let us focus on gene regulatory networks. At once we are
confronted by the need to define what we mean by a gene regulatory network.
From the nature of the individual terms, such a thing would most likely concern a
network of relations among strands of DNA (genes) and the regulatory activities
related to this DNA. There are many mathematical systems that could be called
“gene regulatory networks.”

These are generally dynamical systems satisfying the aforementioned conditions
and each is defined by a set of mathematical symbols and the relations between
them. They are biologically important because describing the regulatory dynamics
of a set of genes requires a mathematical model for the dynamical behavior of
the expression vector for genes in the set. The critical epistemological role of gene
regulatory dynamics is reflected in the outlook of Davidson et al., who write, “The
view taken here is that ‘understanding’ why a given development process occurs
as it does requires learning the key inputs and outputs throughout the genomic
regulatory system that controls the process as it unfolds.”36

The goodness of a gene-regulatory model can be considered with respect to sev-
eral criteria: the level of detailed description of the biochemical reactions involved in
gene regulation, model complexity, model parameter estimation, and, most impor-
tantly, the predictive power of the model. The stochastic-differential-equation model
is arguably the most detailed description of the dynamics of a gene-expression vec-
tor. It could imbed, at least in principle, all of the information about the known
biochemical reactions involved in the gene interactions. At the same time, this kind
of model has high complexity, and the estimation of its parameters cannot be done
without reliable time series data, and a goodly amount of it.

Inevitably one looks for simpler, more pragmatic models. Perhaps the most
extreme simplification is the Boolean model, originally proposed by Stuart
Kauffman for gene regulatory modeling.34 In the Boolean model, gene expression
is quantized to two levels, ON and OFF, and the expression level of each gene
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at time t + 1 is functionally related via logical rules to the levels of some other
genes at time t. The basis of the Boolean model is that during regulation of func-
tional states the cell exhibits switch-like behavior required for state transitions in
normal growth or when a cell needs to respond to external signals. The model
represents biological knowledge to the extent that it can predict observed binary
vectors related to its own dynamical behavior as a nonlinear mathematical system.
This knowledge is of a different sort than biochemical knowledge, but it is still
knowledge.

Of the various forms of knowledge pertaining to genomics, one kind concerns
cellular control mechanisms based on the manner in which information stored in
DNA is converted into molecular machines with various capabilities, including those
required to carry out the copying of DNA and the transformation of its code into
RNA and protein. Via interactions among the proteins present in the cell and
interactions of protein complexes with the DNA, logical relations are produced
that maintain highly varied patterns of gene expression among the differing cell
types present in an organism. Cellular control, and its failure in disease, results
from multivariate decision making, and to the degree that human understanding
of decision making is represented in logic, it is natural to employ logical mod-
els to constitute biological knowledge. Since the cell is an information processing
system, knowledge representation and information theory are fundamental aspects
of biological knowledge, as is the mathematics of control as it pertains to such a
system.

As applied to gene expression, the Boolean model might best be described as
a model of information dynamics. The functions that relate gene states at time
t + 1 to those at time t only relate activity levels, and do not portray molecular
transformations. This notion of activity relation is conveyed by the usual termi-
nology for the state vector, which is called a gene activity profile. The functional
relations between these profiles determine a state transition diagram that is used
to study the long-run dynamics of the system. For a gene to be profitably included
in a Boolean network, the distribution of its expression levels should be essentially
bimodal, so that it can be reasonably modeled as ON-OFF and there is reason to
suspect that it plays a switch-like role — for instance, as when two different tran-
scription factors must bind to the cis-regulatory DNA to activate transcription,
thereby exemplifying AND logic.

The greatest weakness in the Boolean model is not the binary nature of the
state vectors, but its determinism. Whereas deterministic models can be used for
phenomena not subject to consequential perturbations outside those internal to the
system, they cannot model complex interactive physical systems subject to conse-
quential external latent variables. Even the most ardent deterministic metaphysics
does not dispute the necessity of stochastic scientific modeling. This is demonstrated
by the words of the control theorist Vladimir Pugachev, who, after noting that the
law of phenomenological inter-dependence is a fundamental law of dialectical mate-
rialism, states,
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By virtue of this [law], each observable phenomenon is causally related to
innumerable other phenomena and its pattern of development depends on
a multiplicity of factors... Only a limited number of these factors can be
established and traced. For this reason, if we observe the same phenomenon
many times, it is seen that besides its general properties, there are certain
special features which are only typical of a particular observation.38

Deterministic phenomenology, be it Marxist or Laplacian, does not constrain science
to deterministic models. Even if cell function were deterministic, it would be highly
unlikely that this determinism would be reflected in a gene network since the genes
in the model would undoubtedly be affected by events (latent variables), including
genes, outside the model, thereby imparting a stochastic nature to the model. This
would be the case even without considering experimental effects. The movement
from Boolean networks to probabilistic Boolean networks11 as models for genomic
control is inevitable given the role of latent variables in the behavior of complex
systems. In essence, a context-sensitive probabilistic Boolean network is a collection
of Boolean (or finitely quantized) networks with the particular network governing
the dynamical system at any point in time being determined by latent variables, and
therefore being random relative to the model itself. Context sensitivity is dictated
by the inevitability of variables outside the model system.

There is no doubt that for some purposes it would be better to employ more
finely quantized models, or those incorporating protein interaction. And it is cer-
tainly more satisfying to possess a complex model from which a simpler model
results under certain circumstances, as in the case of the excellent approximation
given by Newton’s laws to Einstein’s laws at modest velocities. In the case of bio-
logical networks, a fuller description of the relations among the phenomena would
result from networks involving DNA, RNA, and proteins; nevertheless, the exten-
sive interaction between these constituents insures that a significant amount of the
system information is available in each. In a recently proposed gene-regulatory-
network model that includes both a genomic regulatory functional and a proteomic
regulatory functional, it is shown that under certain conditions the model reduces
to a purely genomic network; however, this can only occur in the steady state.39

Similar reductions will no doubt occur in the future regarding the special conditions
of steady-state behavior, as is typical for dynamical systems. To the degree that we
are concerned with long-run behavior, these simpler systems can suffice.

Although we desire more complete descriptions of phenomena, or perhaps we
should say mathematical models with richer sets of variables and relations between
the variables, a key impediment to finer models is their need for more experi-
mentation. As noted previously, limits on experimental capability place limits on
model complexity. Expression microarrays make multivariate biological analysis
feasible because they provide the ability to make the requisite experiments.40,41

For instance, the historical approach of discovering relations between genes based
on correlation is limited to finding linear univariate predictive relations. One of
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the earliest uses of expression microarrays was to discover nonlinear multivariate
predictive relationships.6,42 Such predictive relationships can be employed as the
functional relations governing state transitions in probabilistic Boolean networks.
The new technology has provided the means to employ finer network models. Still,
constraints on use of the new technology place limitations on the richness of the
models. Owing to cost and the availability of RNA, sample sizes (the number of
microarrays) tend to be small. This places restrictions on our ability to derive
predictive relations from the data, in terms of both the complexity of predictor
functions and the number of predictor variables. This restriction favors coarsely
quantized networks with low connectivity and is reflected in the epistemological
issues of predictive models. These issues are closely related to the corresponding
epistemological issues for classification.

In general, one can understand a process in a rather deep way without exact
knowledge of a particular mechanical implementation of the process. A process
may be understood at different levels, with the appropriate level depending on ones
intentions. For instance, if an algorithm is being implemented on a computer, the
physical processing is taking place at the hardware level. If one is only concerned
with the logical operations of the hardware, these are fully described by the machine
code and the actual hardware can be ignored. Above the machine-code there are
further levels of abstraction: assembly code, C code, Matlab code, and, finally, one
can forego computer code altogether and describe the algorithm fully in mathe-
matical terms. It is at this highest level that essential algorithmic properties such
as convergence are best understood. In the area of information processing there is
no reason to expect that biological decision-making represents a different process
than any other kind of decision making, though it no doubt uses very different
components to carry out the process. In analogy to computer science, one might
say that there is a decision-making layer and a physical [chemical] layer. Boolean
networks provide representation at the decision-making layer. Logical relations such
as MRC1 = V SNL1 OR HTR2C correspond to changes in the continuous data
related to the up- and down-regulated character of the genes involved.43 Such rela-
tions are predictive. It may not always be true that MRC1 = 1 when VSNL1 = 0
and HTR2C = 1. Appreciating the validity of the logical relation depends on the
probability of the relation holding under certain conditions, in much the same way
as for classifiers, which themselves are decision functions.

Attaining a high complexity of form starting from a less complex form may
itself be an example akin to computation, a type of process that has general rules
and requirements and can be implemented on a wide variety of platforms. Knowl-
edge of these rules and requirements may be necessary understandings that do
not derive from ever-finer parameterization of mechanical events and may only
be approached by studying a variety of the products of the process. In the case
of computational processes, the existence of general requirements constrains the
space of potential processes. Typical among such constraints are restrictions on
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computational complexity. It is often the case that an optimal solution exists but
one must look for a suboptimal solution owing to the complexity of a full search.
Thus, the space of potential algorithms is reduced. If there are laws governing the
evolution of complexity, then the space of potential developmental trajectories may
be greatly diminished with respect to the unconstrained space of all possible random
trajectories. In this vein, Kauffman writes,

An effort to include the emergent self-organizing properties typical of large
ensembles of systems in evolutionary theory must provoke a resonant set of
questions and consequences. Not the least of these is an interesting episte-
mological implication. If we should find it possible to account for, explain,
predict widespread features of organisms on the basis of the generic proper-
ties of underlying ensembles, then we would not need to carry out in detail
the reductionistic analysis of organisms in order to explain some of their
fundamental features. As the physicist explains ice formation as a typical
phase transition in a general class of systems, so we might explain aspects
of organisms as typical of their class.44

We close this section by asking what can be said about the reality of systems
composed of symbols representing measurements and relations between those sym-
bols, and is there something less real or less biological about a network representing
information flow than one representing the chemical description of transcription fac-
tors binding to the DNA to seed the formation of a recognition site to which an
RNA polymerase can bind and initiate copying from a DNA strand? Since a living
system is of necessity an information processing system, it seems unreasonable to
maintain that a genomic network corresponding specifically to control information
is not biological. Indeed, the desire to understand information processing within the
cell is a salient motivation for network construction. According to Davidson et al.,

It seems no more possible to understand development from an informational
point of view without unraveling the underlying regulatory networks than
to understand where protein sequence comes from without knowing about
the triplet code... The cis-regulatory systems at the nodes of the network
in reality each process kinetic input information: the rise and fall of the
activities of the transcription factors to which they respond.36

Regarding reality, the fact that a complete biochemical description of cellular
activity would likely produce the corollary description of the information processing
system does not denigrate the reality of the latter. Ultimately, scientific knowledge
resides in the minds of scientists. Henri Poincaré states the matter well,

Does the harmony which human intelligence thinks it discovers in Nature
exist apart from such intelligence? Assuredly no. A reality completely inde-
pendent of the spirit that conceives it, sees it or feels it, is an impossibility.
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A world so external as that, even if it existed, would be forever inaccessible
to us. What we call “objective reality” is, strictly speaking, that which is
common to several thinking beings and might be common to all; this com-
mon part, we shall see, can only be the harmony expressed by mathematical
laws.45

4. Classifier Models

Classification and its related methodologies play a major role in the analysis
of data from high-throughput technologies. A typical application is the use of
microarray data to design an expression-based classifier to distinguish different
types of glioma, for instance, to discriminate between anaplastic astrocytoma
and anaplastic oligodendroglioma.46 Suppose some classification rule, say a sup-
port vector machine, nearest-neighbor rule, or neural network, is used to obtain a
classifier ψ from the data. The immediate question is this: What kind of knowl-
edge is represented by ψ? It certainly provides a model relating gene expression
to the categorization of glioma. If g1, g2, . . . , gd are the genes whose expressions
form the arguments for ψ, then upon providing values for these arguments, ψ

produces a binary value, 0 or 1, representing either anaplastic astrocytoma or
anaplastic oligodendroglioma. But to constitute scientific knowledge, ψ must be
related to quantifiable observations, and not merely stand alone as a mathematical
function.

One might naively approach the matter by saying that a classifier derived from
data via a classification rule is ipso facto related to observations, those being the
data from which it has been derived. But a scientific theory is not concerned merely
with how a model is related to this or that particular observation, but how it is
related to observations in general. In the extreme case, suppose there was a sound
scientific principle that the expression levels of the genes g1, g2, . . . , gd were com-
pletely determinative of the type of glioma. This would mean that there exists a
classifier φ such that φ(x) = 0 whenever x represents the expression levels of the
genes g1, g2, . . . , gd coming from a patient suffering from anaplastic astrocytoma,
and φ(x) = 1 whenever x represents the expression levels of the genes g1, g2, . . . , gd

coming from a patient suffering from anaplastic oligodendroglioma. Now, in the
absence of a determinative scientific principle, suppose a designed classifier ψ per-
fectly classifies the sample data from which it has been derived. The fact that ψ is
perfect on the sample data does not mean that it provides a perfect classifier in the
sense that ψ provides perfect classification for future observations.

In fact, in the case of glioma, and in any other complex disease setting, there
does not exist a classifier that provides perfect classification over all possible obser-
vation vectors. This means that every classifier will have an error rate (based on
probabilistic considerations to be discussed subsequently). This error rate consti-
tutes the goodness of the classifier and, absent its error rate, the classifier lacks a
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quantifiable relationship with events. Notice that it is implicit that the error rate is
relative to some population of events. Moreover, the error rate must be estimated
from sample data. The quality of the estimate determines the validity of the (clas-
sifier, error) pair, and therefore the manner in which we measure this quality is
a key epistemological factor in the scientific model. As with scientific epistemol-
ogy in general, the procedure for estimating the error becomes paramount in this
regard.

Having discussed classification issues in general, we will now consider its epis-
temological basis. This inevitably requires precise mathematical formulation.

Classification involves a feature vector X = (X1, X2, . . . , Xd) on d-dimensional
Euclidean space R

d composed of random variables (features), a binary random vari-
able Y , and a function (classifier) ψ : R

d → {0, 1} for which ψ(X) is to predict Y .
The values, 0 or 1, of Y are treated as class labels. Given a feature-label probability
distribution fX,Y (x, y), the error, εf [ψ], of ψ is the probability or erroneous classi-
fication, namely, εf [ψ] = P (ψ(X) �= Y ). Classification accuracy, and thus the error,
depends on how well the labels are separated by the variables used to discriminate
them.

We consider a classifier model M = (ψ, εψ) as a pair composed of a function
ψ : R

d → {0, 1} and a real number εψ ∈ [0, 1]. ψ and εψ are called the classifier and
error of the model M. The mathematical form of the model is abstract, with εψ not
specifying an actual error probability corresponding to ψ. M becomes a scientific
model when it is applied to a feature-label distribution. It is at this point that the
validity of the model comes into question. The model is valid for the distribution
fX,Y to the extent that εψ approximates εf [ψ]. Hence, quantification of model
validity is relative to the absolute difference |εf [ψ] − εψ|.

Since classification is inherently stochastic, the rate at which the classifier makes
correct predictions is an inherent part of the model that measures our belief that
the classifier will make the proper decision. In a deterministic model, the system
is contingently validated each time an observation is in accord with its prediction.
It stands perpetually open to invalidation if observations do not agree with predic-
tions. In the case of a non-deterministic system, like a classifier, incorrect predictions
are expected and therefore the system requires a probabilistic description of clas-
sifier accuracy. This description — the error rate in the case of decisions — must
be part of the model, and the validity of the model corresponds to the accuracy of
that probabilistic description.

What about the goodness of a model? It may be perfectly valid with εf [ψ] = εψ,
but with εf [ψ] = 0.5, meaning it is no better than flipping a coin. In fact, the quality
of goodness does not apply to the model M, but only to the classifier. Classifier ψ

is better than classifier φ relative to the distribution f if εf [ψ] < εf [φ]. If we have
two models, Mψ = (ψ, εψ) and Mφ = (φ, εφ), then it may well be that ψ is a
better classifier than φ but that Mφ is more valid than Mψ, in the sense that
|εf [ψ]− εψ| > |εf [φ]− εφ|. Regarding goodness, a classifier ψ is optimal (best) for a
feature-label distribution fX,Y if εf [ψ] ≤ εf [φ] for any classifier φ : R

d → {0, 1}. An
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optimal classifier, ψf , of which there may be more than one, and its error, εf [ψf ],
are deducible from the feature-label distribution. These are called a Bayes classifier
and the Bayes error, respectively.

Putting together classifier goodness and model validity, and taking a standard
approach to pairwise ordering, we say that model Mψ = (ψ, εψ) is better than model
Mφ = (φ, εφ) if εf [ψ] ≤ εf [φ] and |εf [ψ] − εψ| ≤ |εf [φ] − εφ|, with strict inequality
holding in at least one of the inequalities. Contingency of a (non-Bayes) model is
manifest in the possibility that a better model may be discovered. Better models
can be found by gathering more data or using a different procedure for model
formation.

Model goodness and validity are problematic in practice. Given two models,
Mψ = (ψ, εψ) and Mφ = (φ, εφ), were we to know the feature-label distribution,
we could then evaluate εf [ψ] and εf [φ] directly to decide which classifier is better
and which model is more valid. Of course, if we know the feature-label distribu-
tion, then we have the Bayes classifier and its error, and these would compose
the model. In practice we do not know the feature-label distribution. If εψ < εφ,
then ψ is apparently better than φ, but we cannot know if it is actually bet-
ter because we cannot know εf [ψ] and εf [φ]. Comparing validity via |εf [ψ] − εψ|
and |εf [φ] − εφ| is impossible for the same reason. We will return to this issue
shortly.

So far we have said nothing about how the model Mψ = (ψ, εψ) has been
discovered. In fact, discovery of the model is not part of the model. The scientist
could have discovered it as “a bolt out of the blue,” perhaps awakening with it out
of a dream. One can imagine James Clerk Maxwell viewing the beautiful waters
off the Isle of Skye, when suddenly Maxwell’s equations pop into his head. So long
as the equations are consistent with observation, whether he had been meditating
on the problem for years, or had never thought of it before, is irrelevant. More to
the immediate issue at hand, a researcher may have gathered some two-dimensional
labeled data, plotted the data points on a graph, and based on the labels, by sight
drawn a line to separate the points to some degree, thereby defining a classifier.
The goodness of this effort depends on the error of the resulting classifier. In either
event, whether it be the great physicist hypothetically vacationing on the scenic
island or the researcher plotting points in the laboratory, the model is not arrived
at by rational analysis. According to Karl Popper,

The question of how it happens that a new idea occurs to a man — whether
it is a musical theme, a dramatic conflict, or a scientific theory — may be
of great interest to empirical psychology; but it is irrelevant to the logical
analysis of scientific knowledge . . . Every discovery contains “an irrational
element,” or “a creative intuition,” in Bergson’s sense. In a similar way,
Einstein speaks of the “search for those highly universal laws . . . from
which a picture of the world can be obtained by pure deduction. There
is no logical path,” he says, “leading to these . . . laws. They can only be
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reached by intuition, based on something like an intellectual love of the
objects of experience.”25

Albert Einstein accentuates the role of creativity when he states, “Experience,
of course, remains the sole criterion for the serviceability of mathematical con-
structions for physics, but the truly creative principle resides in mathematics.”47

According to Feynman, “The laws are guessed; they are extrapolations into the
unknown.”28 The veracity of a scientific model lies in experience, but its concep-
tion arises from the imagination. We must not interpret this to mean that there
is creativity only in construction of the formal mathematical structure. The opera-
tional definitions that relate the model to the data of experience are an integral part
of the scientific model and their formation is also a creative act, including the design
of experiments that provide the data. This does not contradict the mathematical
emphasis in Einstein’s statement because the formal structure of the operational
definitions is symbolic, including experimental design and the statistical procedures
applied to the data, the latter necessarily being grounded within the mathematical
theory of probability.

In practice, the scientist does not discover a classifier directly, but instead applies
an algorithm that takes feature-label data as input and yields a classifier. Given
a random sample Sn = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} of pairs drawn from a
feature-label distribution fX,Y (x, y), we desire a function on Sn that yields a good
classifier. A classification rule is a mapping of the form Ψn : [Rd × {0, 1}]n → Fd,
where Fd is the set of {0, 1}-valued functions on R

d. Given a specific sample sn

(a realization of Sn), we obtain a designed classifier ψn = Ψn(sn) according to the
rule Ψn. Note that if feature selection is involved, then it is part of the classification
rule. The rule still operates on d variables and the classifier is still a member of Fd,
albeit with less than d essential variables.

A key epistemological point is that the classifier, which is part of the scientific
model, is not obtained by a direct creative act (recalling Einstein’s comment);
rather, the creative act is in the choice of classification rule. It is in the choice of
classification rule that the scientist brings to bear an accumulated understanding
of the properties of classification rules and an appreciation of the phenomena under
study. Once the scientist decides on a classification rule, classifier design is purely
a deductive act via the machinery of mathematical operations. The data sample
is entered into the operational machinery of the classification rule and a classifier
results. In this deductive stage the computer plays a critical role: it facilitates the
application of very complex and highly computational classification rules.

What about the discovery of the error term εψ in the model M = (ψ, εψ)?
Suppose the scientist has observed some points in the plane and by sight drawn
a straight line to separate them to some degree. Can εψ be “picked out of the
air?” Of course it can. But this kind of choice is not likely to produce a valid
model, as judged by the comparison between εψ and the true error of the classifier.
A more likely scenario is that the scientist counts the number of points in the
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data misclassified by the line. In this case, the scientist has actually proposed an
estimation rule, Ξn. Although there is no logical necessity, we will assume that
the classifier is part of the estimation rule (else one would be estimating the error
independent of the classifier). Like the choice of classification rule, selection of an
estimation rule is a creative act of the scientist. Also in analogy to the classification
rule, once the scientist decides on an estimation rule, error estimation is a deductive
act via the machinery of mathematical operations. The data sample is entered into
the computational machinery of the estimation rule and an estimate results. This
is a second deductive stage in which the computer plays a key role.

Altogether, we arrive at a scientific model M = (ψ, εψ) by a creative act that
postulates a rule model L = (Ψn, Ξn) and then via deduction from a data sam-
ple. The rule model consists of two operators whose formal structure dictates the
computations to be done on the data. This paradigm of rule-model formation, data
acquisition, and deductive computation to arrive at a classifier model constitutes
the scientific method in the context of classification. More generally, it constitutes
the scientific method in “learning” models from data. It is crucial to computational
biology, where model learning is critical in numerous contexts. Note that creativity
is involved in three ways: forming the classification and estimation rules, experimen-
tal design, and the construction of computational methods from which to deduce
the scientific models from the rule models.

One codicil must be amended to the possible nature of the rule model. The clas-
sification rule or estimation rule may contain a random component — for instance,
random data perturbation or inclusion of random noise in classifier design, or ran-
dom data selection in bootstrap and cross-validation error estimation. For random-
ized rules, Ψn and/or Ξn become random functions on R

d instead of deterministic
functions on R

d. The model M = (ψ, εψ) is still derived by a computation, but it
is a randomized computation, with the computer performing both randomization
(pseudo-randomization) and operator computation.

The goodness of a classifier relates to the precision of Ψn as an estimator of
a Bayes classifier: if a classification rule is expected to yield a classifier whose
error is close to that of a Bayes classifier, then we have confidence that a designed
classifier will be close to being as good as possible for the feature-label distribution
in question. In terms of a classifier model M = (ψ, εψ), we consider the goodness of
ψ under the assumption that both ψ and εψ have been arrived at via the rule model
L = (Ψn, Ξn). Thus, we consider the model Mn = (ψn, ε̂[ψn]), where ψn = Ψ(Sn)
and ε̂[ψn] = Ξn(Sn) for sample data set Sn. As is typical in a probabilistic setting,
we turn our attention to the performance of the rule model.

To compare two classifiers, ψ and φ, relative to a distribution fX,Y (x, y), it is just
as well to compare εf [ψ]− εf [ψf ] to εf [φ]− εf [ψf ], as compare εf [ψ] to εf [φ] , both
of which exceed the Bayes error εf [ψf ]. Hence, the relative goodness of a designed
classifier ψn can be measured by its design cost ∆f [ψn] = εf [ψn] − εf [ψf ]. From
the perspective of the classification rule, ∆f [ψn] and εf [ψn] are sample-dependent
random variables. Thus the salient quantity for a classification rule is the expected
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design cost, E[∆f [ψn]] , the expectation being relative the random sample Sn. The
expected error of the designed classifier is decomposed as

E[εf [ψn]] = εf [ψf ] + E[∆f [ψn]]. (4.1)

A great deal of pattern recognition literature deals with finding classification rules
for which E[∆f [ψn]] is small — qualitatively, a rule is good if E[∆f [ψn]] is small.

A classification rule can yield a classifier that makes very few errors on the
sample data on which it is designed, but performs poorly on the distribution as a
whole. This situation is exacerbated by complex classifiers and small samples. If
the sample size is dictated by experimental conditions, such as cost or the avail-
ability of patient RNA for expression microarrays, then one only has control over
classifier complexity. The problem is not necessarily mitigated by applying an error-
estimation rule to the designed classifier to see if it “actually” performs well, since
when there is only a small amount of data available, error-estimation rules are very
imprecise, and the imprecision tends to be worse for complex classification rules.
Thus, a low error estimate is not sufficient to mitigate the large expected design
error owing to using a complex classifier with a small data set.

To alleviate the problem of overfitting, one may constrain classifier design by
restricting the functions from which a classifier can be chosen to a class C. Con-
straint can reduce the expected design error, but at the cost of increasing the error
of the best possible classifier. Since optimization in C is over a subclass of classifiers,
the error of an optimal classifier, ψC, in C will typically exceed the Bayes error,
unless ψf ∈ C. This cost of constraint is ∆C

f = εf [ψC] − εf [ψf ]. A classification
rule yields a classifier ψn,C ∈ C with error εf [ψn,C], such that εf [ψn,C] ≥ εf [ψC] ≥
εf [ψf ]. Design error for constrained classification is ∆f,C[ψn,C] = εf [ψn,C]− εf [ψC].
For small samples, this can be much less than ∆f [ψn], depending on C and the
rule. The expected error of the designed classifier from C can be decomposed as

E[εf [ψn,C]] = εf [ψf ] + ∆C
f + E[∆f,C[ψn,C]]. (4.2)

The constraint is beneficial if and only if E[εf [ψn,C]] < E[εf [ψn]], which is true if
the cost of constraint is less than the decrease in expected design cost. The dilemma
is that strong constraint reduces E[∆f,C[ψn,C]] at the cost of increasing ∆C

f .

5. Classifier-Model Validity

We now consider the validity of a classifier model M = (ψ, εψ), which is the key
epistemological issue. Again assuming that both ψ and εψ have been arrived at
via the rule model L = (Ψn, Ξn), we consider the model Mn = (ψn, ε̂[ψn]), where
ψn = Ψ(Sn) and ε̂[ψn] = Ξn(Sn) for sample data set Sn. Model validity relates to
the precision of the error estimator ε̂[ψn] in the model Mn = (ψn, ε̂[ψn]), which can
be considered random, depending on the sample. The precision of the estimator
relates to the difference between ε̂[ψn] and εf [ψn], and we require a probabilistic
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measure of this difference. Here we use the root-mean-square error (square root of
the expectation of the squared difference),

RMS (Ψn, ε̂, f, n) =
√

E[|ε̂[ψn] − εf [ψn]|2]. (5.1)

Error-estimation precision depends on the classification rule Ψn, error estimator ε̂,
feature-label distribution f , and sample size n. The RMS can be decomposed into
the bias, Bias[ε̂] = E[ε̂[ψn] − εf [ψn]], of the error estimator relative to the true
error, and the deviation variance, V ardev[ε̂] = V ar[ε̂[ψn] − εf [ψn]], namely,

RMS (Ψn, ε̂, f, n) =
√

V ardev[ε̂] + Bias[ε̂]2, (5.2)

where we recognize that Ψn, f , and n are implicit on the right-hand side.
We consider two error estimators relative to model validity in the context of a

classification rule for which quite a bit is known about the RMS. In multinomial
discrimination, the feature components are random variables whose range is the
discrete set {0, 1, . . . , b − 1}. This corresponds to choosing a fixed-partition in R

d

with b cells. The histogram rule assigns to each cell the majority label in the cell.
The resubstitution estimator, ε̂res, is the fraction of errors made by the designed
classifier on the sample. For histogram rules, it is biased low, meaning E[ε̂res[ψn]] ≤
E[εf [ψn]]. For small samples, the bias can be severe, bias increasing for increasing
complexity (increasing number of cells). Bias lessens for large samples. For the
leave-one-out estimator, ε̂loo, n classifiers are designed from sample subsets formed
by leaving out one sample point, each is applied to the left-out point, and the
estimator is 1

n times the number of errors made by the n classifiers. It is unbiased
as an estimator of the expected error for samples of size n−1, meaning E[ε̂loo[ψn]] =
E[εf [ψn−1]]. Thus, there is only a small bias component for the RMS; however, the
leave-one-out estimator has a high variance component compared to resubstitution
and the variance can be sufficiently severe to offset its bias advantage when it
comes to model validity. There exist distribution-free bounds on the RMS for both
resubstitution and leave-one-out in the context of the histogram rule for multinomial
discrimination48 and, given the feature-label distribution, there exist exact analytic
formulations of the RMS for both resubstitution and leave-one-out.49 The latter
expressions show that the RMS decreases for decreasing b. They also show that for
a wide range of distributions, resubstitution outperforms leave-one-out for fewer
than eight cells (which corresponds to three binary predictor variables). Thus, we
can expect greater model validity if we use resubstitution in these cases. For 16
cells (four binary predictor variables) and up, leave-one-out is superior.

In practice one does not know the feature-label distribution, so that distribution-
free RMS bounds can be useful if they are suffciently tight; however, if exact validity
measurements have been obtained for many representative models, then these pro-
vide an indication of what one might expect for similar distributions. As always,
there is a creative step in choosing the rule model. There is no non-mathematical
way to precisely describe knowledge regarding model validity. It depends on the
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choice of validity measurement and the mathematical properties of that measure-
ment as applied in different circumstances. Generally, model validity improves for
large samples and less complex classifiers. In all cases, the nature of our knowledge
rests with the mathematical theory we have concerning the measurements. That
cannot be simplified. If either the available theory or one’s familiarity with the
theory are limited, then one’s appreciation of the scientific content of a model is
limited.

Our considerations relating to model validity have practical consequences rela-
tive to experimental design. For instance, one can obtain bounds of the sort

E[∆f,C[ψn,C]] ≤ λC

√
log n

2n
, (5.3)

for the expected design cost of a constrained classifier, where λC is a constant
depending on the complexity of the classification rule, and n is the sample size.48,50

For small samples, the kind typically encountered with microarray experiments,
the bound exceeds 1 even for relatively simple classification rules. One might argue
that this is only a bound, and that in fact the design cost might be small for a
complex classification rule even if the sample is not large. Certainly this is possi-
ble. One might further argue that the way to proceed is to go ahead and apply
the complex classification rule and then estimate its error. If the estimated error is
small, then conclude that classifier is good. The problem with this approach is that
the model lacks validity. Given the small sample and high complexity, the error
estimate will be poor. The situation is exacerbated if one applies several complex
classification rules and then chooses the designed classifier with lowest estimated
error. Here we confront a variant of the classical multiple-comparisons problem.
Owing to the high variance of the error estimator, if one tries enough rules, one is
bound to design a classifier possessing an optimistically small error estimate. To go
further with these practical considerations, suppose it is actually true that a com-
plex classifier has a low error for a small sample. Then, in fact, it is likely that the
feature-label distribution is not complex and that a low-complexity classifier would
have performed at least as well, or better. Although we have stated this principle
absent mathematical formality, it can be given formality by defining a complex-
ity measure for feature-label distributions.51 The conclusion from these consider-
ations is that one should apply a simple classification rule when the sample size
is small.

From a general perspective of experimental design, one cannot decouple the
mathematical model from the experiment or from the statistical methodology
applied to the data. Douglas Montgomery puts the matter in a way that highlights
the creative step in experimental design as well as its epistemological role:

If an experiment is to be performed most efficiently, then a scientific
approach to planning the experiment must be considered. By the statistical
design of experiments we refer to the process of planning the experiment so



February 18, 2006 16:31 WSPC/129-JBS 00172

86 Dougherty & Braga-Neto

that appropriate data will be collected, which may be analyzed by statis-
tical methods resulting in valid and objective conclusions. The statistical
approach to experimental design is necessary if we wish to draw meaningful
conclusions from the data.52

It is implicit in the notion of appropriate data being analyzed in a way that results
in valid conclusions that design must take into account the model to which the data
are to be applied and the relation of the data to the variables in the model. In this
way, Kant’s concept-percept duality manifests itself in the design of experiments, in
the process requiring a tight practical connection between theory and experiment.

6. Concluding Remarks

If we remain within the epistemology of modern science, then the mathematical
role of computational biology is to form the theoretical content of biological knowl-
edge, its computational role is to provide the algorithms to implement the complex
functions necessary for modeling, and its statistical role is to provide the machinery
to quantify the relation between the mathematical model and experimental data.
It must always be remembered that science is not mathematics. There must be
a procedure for relating consequences of the mathematical system to quantifiable
observations. The theory must be predictive. It must have two parts: a mathemat-
ical system and a way of relating the system to observations. We understand the
theory to the degree that we understand the mathematical system. We believe the
theory to the degree to which observations confirm predictions of the mathematical
system.

In discussing classification, which as we remarked is prototypical of statistical
methods used in computational biology, we have shown how the theory conforms to
the epistemological requirements of modern science. This is not an abstract discus-
sion outside the purview of practicing scientists. The meaning of scientific knowledge
lies within the scientific epistemology, and surely that meaning is important to any
working scientist. Of particular importance is the predictive requirement and how it
is satisfied by the theory of classification. It would be mistaken to think that episte-
mology is an afterthought, to be explained once a working theory — mathematical
system and experimental method — are in place. Quite the opposite! Epistemology
places demands on research if that research is to have scientific content.

To help make the point, we could first recall James Clerk Maxwell hypothet-
ically sitting on the Isle of Skye dreaming of his equations, but instead we will
imagine a young geneticist lying on shady grass outside the laboratory. The rest
of the team is inside studying the recent microarray data and applying a neural-
network classification rule to derive a classifier to discriminate between two types
of glioma. The young geneticist is meditating on the molecular structure of certain
genes and their roles in protein regulation. Eureka! Suddenly it crystallizes in the
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young iconoclast’s mind that the expression levels of CREB1 and RAB3A can be
used as inputs to a linear classifier to discriminate between anaplastic astrocytoma
and anaplastic oligodendroglioma. Not only that, but the meditations also reveal
coefficients for the linear model. How does this model compare to one obtained by
the team applying a neural-network classification rule to a typically small sample of
microarray data? This will be determined by a fierce struggle for survival. For now,
however, we can compare the error estimate of the designed neural network on the
sample data with the error of the linear classifier on the sample data, keeping in
mind the properties of error estimation. The truly better classifier is the one that
will make fewer errors in the long run.

For another example of how epistemology places requirements on research, we
will consider briefly data clustering. As historically applied, a set of data points
is obtained and input to a clustering algorithm to partition the data into clusters.
How the algorithm has been discovered is not a matter for clustering epistemol-
ogy. Most likely it has been discovered by a researcher meditating on mathematical
issues relating to grouping data of different types. For instance, the k-means algo-
rithm is related to finding a collection of centers to minimize an empirical squared-
Euclidean-distance error. The critical epistemological issue is prediction. Meditative
model discovery is fine, but the scientific epistemology requires measurement of the
model’s predictive capability. This requires an error theory in which prediction can
be evaluated, as with classification. Jain et al. get at the depth of the problem
when they write, “Clustering is a subjective process; the same set of data items
often needs to be partitioned differently for different applications.”53 The problem
here is immediate; indeed, as stated by Karl Popper, “The objectivity of scientific
statements lies in the fact that they can be inter-subjectively tested.”25 Subjective
science is an oxymoron. But what else could one say when there is no theory of
error? Going further, Duda et al. bring up the whole issue of ad hoc data manip-
ulation in regard to clustering when they state, “The answer to whether or not
it is possible in principle to learn anything from unlabeled data depends upon
the assumptions one is willing to accept — theorems cannot be proved without
premises.”54 These criticisms raise the question as to whether clustering can be
used for scientific knowledge. What is to be done? Should we give up grouping
data? Should we group data and give up on science? Neither option is acceptable.
The answer is to place clustering into a proper mathematical framework so that
the predictive capability of an algorithm can be measured.

Whereas a classifier operates on a point to produce a label, a clustering algorithm
operates on a set of points to produce a partition of the point set. The probabilistic
theory of classification, which provides its epistemological foundation, is based on a
classifier being viewed as an operator on random points (vectors). A corresponding
probabilistic theory of clustering would view a clustering algorithm as an operator
on random point sets. Moreover, whereas the predictive capability of a classifier is
measured by the decisions it yields regarding the labeling of random points, the
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predictive capability of a clustering algorithm would be measured by the decisions
it yields regarding the partitioning of random point sets. Once this is recognized,
the path to the development of error estimators for clustering accuracy and rules to
derive clustering operators from data is open and the entire issue can be placed on
firm epistemological ground.55 This does not close the matter; rather, new burdens
are placed on creativity to develop the mathematical theory of clustering, invent
clustering rule models, and devise experimental methods — all in the context of
random sets, which is a much more challenging environment than that of random
variables. Scientific epistemology is demanding, but it should never be looked upon
as an impediment; rather, it should be seen as a guide to both theoretical and
experimental research.
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