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This paper considers key issues in the emerging field of genomic signal processing and its relationship to functional genomics.
It focuses on some of the biological mechanisms driving the development of genomic signal processing, in addition to their
manifestation in gene-expression-based classification and genetic network modeling. Certain problems are inherent. For instance,
small-sample error estimation, variable selection, and model complexity are important issues for both phenotype classification
and expression prediction used in network inference. A long-term goal is to develop intervention strategies to drive network
behavior, which is briefly discussed. It is hoped that this nontechnical paper demonstrates that the field of signal processing has
the potential to impact and help drive genomics research.
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1. INTRODUCTION

Sequences and clones for over a million expressed sequence
tagged sites (ESTs) are currently publicly available. Only a
minority of these identified clusters contains genes associ-
ated with a known functionality. One way of gaining insight
into a gene’s role in cellular activity is to study its expres-
sion pattern in a variety of circumstances and contexts, as
it responds to its environment and to the action of other
genes. Recent methods facilitate large-scale surveys of gene
expression in which transcript levels can be determined for
thousands of genes simultaneously. In particular, expression
microarrays result from a complex biochemical-optical sys-
tem incorporating robotic spotting and computer image for-
mation and analysis. Since transcription control is accom-
plished by a method that interprets a variety of inputs, we
require analytical tools for expression profile data that can
detect the types of multivariate influences on decision mak-
ing produced by complex genetic networks. Put more gen-
erally, signals generated by the genome must be processed
to characterize their regulatory effects and their relationship
to changes at both the genotypic and phenotypic levels. Two
salient goals of functional genomics are to screen for key
genes and gene combinations that explain specific cellular

phenotypes (e.g., disease) on a mechanistic level, and to use
genomic signals to classify disease on a molecular level.

Genomic signal processing (GSP) is the engineering dis-
cipline that studies the processing of genomic signals. Ow-
ing to the major role played in genomics by transcriptional
signaling and the related pathway modeling, it is only nat-
ural that the theory of signal processing should be utilized
in both structural and functional understanding. The aim of
GSP is to integrate the theory and methods of signal process-
ing with the global understanding of functional genomics,
with special emphasis on genomic regulation. Hence, GSP
encompasses various methodologies concerning expression
profiles: detection, prediction, classification, control, and sta-
tistical and dynamical modeling of gene networks. GSP is
a fundamental discipline that brings to genomics the struc-
tural model-based analysis and synthesis that form the basis
of mathematically rigorous engineering.

Application is generally directed towards tissue classifi-
cation and the discovery of signaling pathways, both based
on the expressed macromolecule phenotype of the cell. Ac-
complishment of these aims requires a host of signal process-
ing approaches. These include signal representation relevant
to transcription, such as wavelet decomposition and more
general decompositions of stochastic time series, and system
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modeling using nonlinear dynamical systems. The kind of
correlation-based analysis commonly used for understand-
ing pairwise relations between genes or cellular effects can-
not capture the complex network of nonlinear information
processing based upon multivariate inputs from inside and
outside the genome. Regulatory models require the kind of
nonlinear dynamics studied in signal processing and con-
trol, and in particular the use of stochastic dataflow networks
common to distributed computer systems with stochastic
inputs. This is not to say that existing model systems suf-
fice. Genomics requires its own model systems, not simply
straightforward adaptations of currently formulated mod-
els. New systems must capture the specific biological mecha-
nisms of operation and distributed regulation at work within
the genome. It is necessary to develop appropriate mathe-
matical theory, including optimization, for the kinds of ex-
ternal controls required for therapeutic intervention as well
as approximation theory to arrive at nonlinear dynamical
models that are sufficiently complex to adequately represent
genomic regulation for diagnosis and therapy while not be-
ing overly complex for the amounts of data experimentally
feasible or for the computational limits of existing computer
hardware.

2. BACKGROUND

A central focus of genomic research concerns understanding
the manner in which cells execute and control the enormous
number of operations required for normal function and the
ways in which cellular systems fail in disease. In biological
systems, decisions are reached by methods that are exceed-
ingly parallel and extraordinarily integrated, as even a cur-
sory examination of the wealth of controls associated with
the intermediary metabolism network demonstrates. Feed-
back and damping are routine even for the most common
activities, such as cell cycling, where it seems that most pro-
liferative signals are also apoptosis priming signals, with the
final response to these signals resulting from successful nego-
tiation of a large number of checkpoints, which themselves
involve further extensive cross checks of cellular conditions.

Traditional biochemical and genetic characterizations of
genes do not facilitate rapid sifting of these possibilities to
identify the genes involved in different processes or the con-
trol mechanisms employed. Of course, when methods do ex-
ist to focus genetic and biochemical characterization proce-
dures on a smaller number of genes likely to be involved in
a process, progress in finding the relevant interactions and
controls can be substantial. The earliest understandings of
the mechanics of cellular gene control were derived in large
measure from studies of just such a case, metabolism in sim-
ple cells. In metabolism, it is possible to use biochemistry to
identify stepwise modifications of the metabolic intermedi-
ates and genetic complementation tests to identify the genes
responsible for catalysis of these steps, and those genes and
cis-regulator elements involved in the control of their ex-
pression. Standard methods of characterization guided by
some knowledge of the connections could thus be used to

identify process components and controls. Starting from the
basic outline of the process, molecular biologists and bio-
chemists have been able to build up a very detailed view of
the processes and regulatory interactions operating within
the metabolic domain.

In contrast, for most cellular processes, general methods
to implicate likely participants and to suggest control rela-
tionships have not emerged. The resulting inability to pro-
duce overall schemata for most cellular processes has meant
that gene function is, for the largest part, determined in a
piecemeal fashion. Once a gene is suspected of involvement
in a particular process, research focuses on the role of that
gene in a very narrow context. This typically results in the
full breadth of important roles for well-known, highly char-
acterized genes being slowly discovered. A particularly good
example of this is the relatively recent appreciation that onco-
genes such as Myc can stimulate apoptosis in addition to pro-
liferation [1].

Recognition of this bottleneck has stimulated the field’s
appetite for methods that can provide a wider experimen-
tal perspective on how genes interact. High-throughput mi-
croarray technology, which facilitates large-scale surveys of
gene expression, can now provide enormous data sets con-
cerning transcriptional levels [2, 3, 4, 5]. As these measure-
ments are snapshots of the types of levels of transcripts re-
quired to achieve or maintain the cell state being observed,
they constitute a de facto source of information about tran-
script interactions involved in gene regulation.

Analysis of this data can take two routes: gene-by-gene
analysis or multivariate analysis of interactions among many
genes simultaneously. Correlation and other similarity mea-
sures can identify common elements of a cell’s response to
a particular stimulus and thus discern some groups of genes;
however, correlation does not address the fundamental prob-
lem of determining the sets of genes whose actions and in-
teractions drive the cell’s decision to set the transcriptional
level of a particular gene. Because transcriptional control is
accomplished by a complex method that interprets a variety
of inputs [1, 6, 7], the development of analytical tools that
detect multivariate influences on decision-making present in
complex genetic networks is essential. To carry out such an
analysis, one needs appropriate analytical methodologies.

As a discipline, signal processing involves the construc-
tion of model systems. These can be composed of vari-
ous mathematical structures, such as systems of differen-
tial equations, graphical networks, stochastic functional rela-
tions, and simulation models. By its nature, signal processing
draws upon many related disciplines, including estimation,
classification, pattern recognition, control, information, net-
works, computation, statistics, imaging, coding, and artificial
intelligence. These in turn draw upon signal processing to the
extent that their application involves processing signals.

Numerous mathematical and computational methods
have been proposed for construction of formal models of ge-
netic interactions. Many of these models have the following
general characteristics:

(1) the models essentially represent systems in that they
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(a) characterize an interacting group of components
forming a whole,

(b) can be viewed as a process that results in a trans-
formation of signals,

(c) generate outputs in response to input stimuli;
(2) the models are dynamical in that they

(a) capture the time-varying quality of the physical
process under study,

(b) can change their own behavior over time;
(3) the models can be considered generally nonlinear in

that the interactions within the system yield behavior
more complicated than the sum of the behaviors of the
agents.

The preceding characteristics are representatives of
nonlinear dynamical systems. These are composed of states,
input and output signals, transition operators between states,
and output operators. In their most abstract form, they are
very general. More mathematical structure is provided for
particular application settings. For instance, in computer sci-
ence they can be structured into the form of dataflow graphi-
cal networks that model asynchronous distributed computa-
tion, a model that is very close to genomic regulatory mod-
els. There have been many attempts to model gene regulatory
networks including probabilistic graphical models, such as
Bayesian networks [8, 9, 10, 11], neural networks [12, 13],
differential equations [14], Boolean [15] and probabilistic
Boolean networks [16, 17], and models including stochastic
components on the molecular level [18].

As we look towards medical applications based on func-
tional genomics, dynamical modeling is at the center. Som-
ogyi and Greller [19] give the following areas in which dy-
namical modeling will play a “pivotal role”:

(i) stimulus-response interactions,
(ii) prediction of new targets based on pathway context,

(iii) potential use of combinatorial therapies,
(iv) pathway responses including the understanding of re-

active or compensatory behavior,
(v) stress and toxic response mechanisms,

(vi) off-target effects of therapeutic compounds,
(vii) pharmacodynamics,

(viii) characterization of disease states by dynamical behav-
ior,

(ix) gene expression and protein expression signatures for
diagnostics,

(x) design of optimized time-dependent dosing regimens.

As we consider the salient issues of GSP, it should become
evident that the preceding list offers a call for a major effort
on the part of the signal processing community to apply its
store of knowledge to genetic science and medicine.

3. TECHNOLOGY

A cell relies on its protein components for a wide variety of
its functions, including energy production, biosynthesis of
component macromolecules, maintenance of cellular archi-
tecture, and the ability to act upon intra- and extra-cellular

stimuli. Each cell in an organism contains the information
necessary to produce the entire repertoire of proteins the
organism can specify. Since a cell’s specific functionality is
largely determined by the genes it is expressing, it is logical
that transcription, the first step in the process of convert-
ing the genetic information stored in an organism’s genome
into protein, would be highly regulated by the control net-
work that coordinates and directs cellular activity. A primary
means for regulating cellular activity is the control of pro-
tein production via the amounts of mRNA expressed by in-
dividual genes. The tools to build an understanding of ge-
nomic regulation of expression will involve the characteriza-
tion of these expression levels. Microarray technology, both
cDNA and oligonucleotide, provides a powerful analytic tool
for genetic research. Since our concern in this paper is to ar-
ticulate the salient issues for GSP, and not to delve deeply
into microarray technology, we confine our brief discussion
to cDNA microarrays.

Complementary DNA microarray technology combines
robotic spotting of small amounts of individual, pure nu-
cleic acid species on a glass surface, hybridization to this array
with multiple fluorescently labeled nucleic acids, and detec-
tion and quantitation of the resulting fluor-tagged hybrids
by a scanning confocal microscope. A basic application is
quantitative analysis of fluorescence signals representing the
relative abundance of mRNA from distinct tissue samples.
Complementary DNA microarrays are prepared by print-
ing thousands of cDNAs in an array format on glass micro-
scope slides, which provide gene-specific hybridization tar-
gets. Distinct mRNA samples can be labeled with different
fluors and then co-hybridized onto each arrayed gene. Ratios
(or sometimes the direct intensity measurements) of gene
expression levels between the samples can be used to detect
meaningfully different expression levels between the samples
for a given gene. Given an experimental design with multiple
tissue samples, microarray data can be used to cluster genes
based on expression profiles, to characterize and classify dis-
ease based on the expression levels of gene sets, and for other
signal processing tasks.

A typical glass-substrate and fluorescent-based cDNA
microarray detection system is based on a scanning con-
focal microscope, where two monochrome images are ob-
tained from laser excitations at two different wavelengths.
Monochrome images of the fluorescent intensity for each
fluor are combined by placing each image in the appropri-
ate color channel of an RGB image. In this composite im-
age, one can visualize the differential expression of genes in
the two cell types: test sample typically placed in red chan-
nel, and the reference sample in the green channel. Intense
red fluorescence at a spot indicates a high level of expression
of that gene in the test sample with little expression in the
reference sample. Conversely, intense green fluorescence at a
spot indicates relatively low expression of that gene in the test
sample compared to the reference. When both test and refer-
ence samples express a gene at similar levels, the observed
array spot is yellow. Assuming that specific DNA products
from two samples have an equal probability of hybridizing
to the specific target, the fluorescent intensity measurement
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is a function of the amount of specific RNA available within
each sample, provided that samples are well mixed and there
is sufficiently abundant cDNA deposited at each target loca-
tion.

When using cDNA microarrays, the signal must be ex-
tracted from the background. This requires image process-
ing to extract signals arising from tagged reverse-transcribed
cDNA hybridized to arrayed cDNA locations [20], and vari-
ability analysis and measurement quality assessment. The
objective of the microarray image analysis is to extract probe
intensities or ratios at each cDNA target location and then
cross-link printed clone information so that biologists can
easily interpret the outcomes and high-level analysis can be
performed. A microarray image is first segmented into in-
dividual cDNA targets, either by manual interaction or by an
automated algorithm. For each target, the surrounding back-
ground fluorescent intensity is estimated, along with the ex-
act target location, fluorescent intensity, and expression ratio.

In a microarray experiment, there are many sources of
variation. Some types of variation, such as differences of gene
expressions, may be highly informative as they may be of bi-
ological origin. Other types of variation, however, may be
undesirable and can confound subsequent analysis, leading
to wrong conclusions. In particular, there are certain sys-
tematic sources of variation, usually due to specific features
of the particular microarray technology, that should be cor-
rected prior to further analysis. The process of removing such
systematic variability is called normalization. There may be
a number of reasons for normalizing microarray data. For
example, there may be a systematic difference in quantities
of starting RNA, resulting in one sample being consistently
over-represented. There may also be differences in labeling or
detection efficiencies between the fluorescent dyes (e.g., Cy3
or Cy5), again leading to systematic overexpression of one
of the samples. Thus, in order to make meaningful biologi-
cal comparisons, the measured intensities must be properly
adjusted to counteract such systematic differences.

4. SALIENT ISSUES FOR GSP

In this section we address what we consider to be the salient
issues for GSP: phenotype classification and genetic regula-
tory networks, which include expression prediction and net-
work intervention and control. Other topics, including im-
age processing, signal extraction, data normalization, quan-
tization, compression, expression-based clustering, and sig-
nal processing methods for sequence analysis play necessary
and supportive roles.

4.1. Classification

An expression-based classifier provides a list of genes whose
product abundance is indicative of important differences in
cell state, such as healthy or diseased, or one particular type
of cancer or another. Among such informative genes are
those whose products play a role in the initiation, progres-
sion, or maintenance of the disease. Two central goals of
molecular analysis of disease are to use such information to

directly diagnose the presence or type of disease and to pro-
duce therapies based on the disruption or correction of the
aberrant function of gene products whose activities are cen-
tral to the pathology of a disease. Correction would be ac-
complished either by the use of drugs already known to act
on these gene products or by developing new drugs targeting
these gene products.

Achieving these goals requires designing a classifier that
takes a vector of gene expression levels as input and outputs a
class label that predicts the class containing the input vector.
Classification can be between different kinds of cancer, dif-
ferent stages of tumor development, or many other such dif-
ferences. Classifiers are designed from a sample of expression
vectors. This requires assessing expression levels from RNA
obtained from the different tissues with microarrays, deter-
mining genes whose expression levels can be used as classifier
variables, and then applying some rule to design the classifier
from the sample microarray data. Design, performance eval-
uation, and application of classifiers must take into account
randomness arising from both biological and experimental
variability. To rapidly move from expression data to diagnos-
tics that can be integrated into current pathology practice or
to useful therapeutics, expression patterns must carry suffi-
cient information to separate sample types.

Classification using a variety of methods has been used
to exploit the class-separating power of expression data in
cancer: leukemias [21], various cancers [22], small, round,
blue-cell cancers [23], hereditary breast cancer [24], colon
cancer [25], breast cancer [4], melanoma [26], and glioma
[27].

Three critical statistical issues arise for expression-based
classification [28, 29]. First, given a set of variables, how does
one design a classifier from the sample data that provides
good classification over the general population? Second, how
does one estimate the error of a designed classifier when data
is limited? Third, given a large set of potential variables, such
as the large number of expression level determinations pro-
vided by microarrays, how does one select a set of variables
as the input vector to the classifier? The problem of small-
sample error estimation impacts variable selection in a devil-
ish way. An error estimator may be unbiased but have a large
variance, and therefore often be low. This can produce a large
number of gene (variable) sets and classifiers with low error
estimates. For a small sample, one can end up with thou-
sands of gene sets for which the error estimate from the data
at hand is zero. In the other direction, a small sample size en-
hances the possibility that a designed classifier will perform
worse than the optimal classifier. Combined with a high er-
ror estimate, the result will be that many potentially good
diagnostic gene sets will be pessimistically evaluated.

Not only is it important to base classifiers on small num-
bers of genes from a statistical perspective, but there are also
compelling biological reasons for small classifier sets. As pre-
viously noted, correction of an aberrant function would be
accomplished by the use of drugs. Sufficient information
must be vested in gene sets small enough to serve as either
convenient diagnostic panels or as candidates for the very ex-
pensive and time-consuming analysis required to determine
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if they could serve as useful targets for therapy. Small gene
sets are necessary to allow construction of a practical im-
munohistochemical diagnostic panel. In sum, it is important
to develop classification algorithms specifically tailored for
small samples [27].

While clustering algorithms do not produce the speci-
ficity and quantitative predictability of classification proce-
dures, they can provide the means to group expression pat-
terns that are coexpressed over a range of experiments in or-
der to detect common regulatory motifs in an unsupervised
manner. Moreover, by considering expression profiles over
various tissue samples, clustering these samples based on the
expression levels for each sample helps to develop techniques
that offer the potential to discriminate pathologies and to
recognize various forms of cancers or cell types. Clustering
constitutes a supporting methodology for classification and
prediction.

Many clustering approaches, such as K-means [30], self-
organizing maps [31], hierarchical clustering [32], and oth-
ers, have been applied to gene expression data analysis. One
difficulty is that the selection of various algorithm parame-
ters and other choices (e.g., type of linkage), initial condi-
tions, and distance measures can all critically impact the re-
sults of clustering. Moreover, the number of clusters must of-
ten be chosen in advance. Therefore, comparison of results
and analysis of the inference capability of clustering algo-
rithms is important [33]. A good overview of clustering algo-
rithms, as applied to gene expression data, including cluster
validation, is available in [34].

4.2. Networks

A model of a genetic regulatory network is intended to cap-
ture the simultaneous dynamical behavior of all elements,
such as transcript or protein levels, for which measurements
exist. Needless to say, it is possible to devise theoretical mod-
els, for instance based on systems of differential equations,
that are intended to represent as faithfully as possible the
joint behavior of all of these constituent elements. The con-
struction of the models, in this case, can be based on exist-
ing knowledge of protein-DNA and protein-protein interac-
tions, degradation rates, and other kinetic parameters. Addi-
tionally, some measurements focusing on small-scale molec-
ular interactions can be made, with the goal of refining the
model. However, global inference of network structure and
fine-scale relationships between all the players in a genetic
regulatory network is still an unrealistic undertaking with ex-
isting genome-wide measurements produced by microarrays
and other high-throughput technologies.

Thus, if we take the pragmatic viewpoint that models are
intended to predict certain behavior, be it steady-state ex-
pression levels of certain groups of genes or simply the func-
tional relationships between a group of genes, we must then
develop them with the awareness of the types of data that
are available. For example, it may not be prudent to attempt
inferring dozens of continuous-valued rates of change and
other parameters in differential equations from only a few
discrete-time measurements taken from a population of cells
that may not be synchronized with respect to their gene ac-

tivities (e.g., cell cycle) and with a limited knowledge and
understanding of the sources of variation due to the mea-
surement technology and the underlying biology. What we
should rather strive for is obtaining the simplest model that
is capable of “explaining” the data at some chosen level of
“coarseness” (Ockham’s Razor). That is, we must strike the
right balance between goodness-of-fit and model complex-
ity.

Recently, a new class of models, called probabilistic
Boolean networks (PBNs), has been proposed for modeling
gene regulatory networks [16]. PBNs inherently capture the
dynamics of gene regulation and activity, are probabilistic in
nature, thus being able to absorb some of the uncertainty in-
trinsic to the data, are rule-based, and can be inferred from
gene expression data sets in a straightforward manner. This
class of models constitutes a probabilistic generalization of
the well-known Boolean network model [35]. The PBN can
be constructed so as to involve many simple but good predic-
tors of gene activity. Just as importantly, it can include the sit-
uation where the structure of the model network changes in
accord with the activity of latent variables outside the model,
in effect, thereby resulting in a model composed of a family
of constituent classical Boolean networks [17].

4.2.1. Prediction

The study of gene interaction and the concomitant behav-
ioral changes due to signals external to the genome itself fits
into the classical theories of nonlinear filtering, stochastic
control, and nonlinear dynamical systems. Central to both
analysis and design is prediction. With microarray technol-
ogy, the gene expression measurements compose a random
vector over time. They have a stochastic nature on account of
both inherent biological variability and experimental noise.
Genetic changes over time concern this random vector as a
temporal process. Questions regarding the interrelation be-
tween genes at a given moment of time concern this vector
at that moment. Comparison of two cell lines, say tumori-
genic and nontumorigenic, involves two random processes
and their cross probabilistic characteristics.

The genome is not a closed system. It is affected by intra-
cellular activity, which in turn is affected by external factors.
At a very general level, we might represent the situation by
a pair of vectors, X denoting the gene expression time pro-
cess and Z being a vector of variables external to the genome,
either cellular or otherwise. In any practical situation, these
will only include variables that are observable, measurable,
and of interest. In a laboratory setting, Z might be composed
of several components decided upon by the experimenter.
Ultimately, our concern is with temporal transitions of X ,
affected by both the current states of X and Z. The most crit-
ical problem is the prediction of X at a future time from a
current observation of X and knowledge of Z.

A predictor must be designed from data, which ipso facto
means that it is an approximation of the predictor whose
action one would actually like to model. The precision of
the approximation depends on the design procedure and the
sample size. Even for a relatively small number of predictor
genes, good design can require a very large sample; however,
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one typically has a small number of microarrays. There is
also the computational problem inherent in the vast num-
ber of possible combinations of genes that can be involved in
prediction. The problems of classifier design apply essentially
unchanged when inferring predictors from sample data. To
be effectively addressed, they need to be approached within
the context of constraining biological knowledge, since prior
knowledge significantly reduces the data requirement.

Even in the context of limited data, there are modest ap-
proaches that can be taken. One general statistical approach
is to discover associations between the expression patterns of
genes via the coefficient of determination [36, 37, 38]. This
coefficient measures the degree to which the transcriptional
levels of an observed gene set can be used to improve the pre-
diction of the transcriptional state of a target gene relative to
the best possible prediction in the absence of observations.
The method allows incorporation of knowledge of other con-
ditions relevant to the prediction, such as the application of
particular stimuli or the presence of inactivating gene mu-
tations, as predictive elements affecting the expression level
of a given gene. Using the coefficient of determination, one
can find sets of genes related multivariately to a given tar-
get gene. No causality is inferred. It may be that the target is
controlled by a function of the predictive genes, or they pre-
dict well the behavior of the target because it is a switch for
them. The relationship may involve intermediate genes in a
complex pathway.

Another approach for finding groups of genes or factors
that are likely to determine the activity of some target gene
is the minimal description length (MDL) principle, which
has been applied in the context of gene expression predic-
tion [39]. This approach essentially seeks flexible classes of
models with good predictive properties and considers the
complexity of the models as a penalizing factor. With the
fundamental goal being to improve the predictive accuracy
or generalizability of the model [40], the MDL principle at-
tempts to select the model that achieves the shortest code
length describing both the data and the model. A related ap-
proach, called normalized maximum likelihood (NLM), has
also been recently used for gene-expression-based prediction
and classification [41].

4.2.2. Intervention

One reason for studying regulatory models is to develop in-
tervention strategies to help guide the time evolution of the
network towards more desirable states. Three distinct ap-
proaches to the intervention problem have been considered
in the context of probabilistic Boolean networks by exploit-
ing their Markovian nature. First, one can toggle the expres-
sion status of a particular gene from ON to OFF or vice versa
to facilitate transition to some other desirable state or set of
states. Specifically, by using the concept of the mean first pas-
sage time, it has been demonstrated how the particular gene,
whose transcription status is to be momentarily altered to
initiate the state transition, can be chosen to “minimize” in
a probabilistic sense the time required to achieve the desired
state transitions [42]. A second approach has aimed at chang-
ing the steady-state (long-run) behavior of the network by

minimally altering its rule-based structure [43]. A third ap-
proach has focused on applying ideas from control theory
to develop an intervention strategy, using dynamic program-
ming, in the general context of Markovian genetic regulatory
networks whose state transition probabilities depend on an
external (control) variable [44].

5. CONCLUDING REMARKS

Computational genomics has been greatly influenced by data
mining, partly due to the availability of large data sets and
databases. Although data mining, as a discipline, is quite
broad and lies at the intersection of statistics, machine learn-
ing, pattern recognition, and artificial intelligence, there are
a number of challenging and important problems in com-
putational genomics that can benefit from the application of
engineering principles and methodologies, the latter being
characterized by systems-level modeling and simulation.

Modern signal processing, though encompassing many
of the same subject areas, has had a different history and
background. As such, the applications around which the field
has developed have been of a substantially different nature
than those in data mining. While data mining problems are
often centered around visualization and exploratory analysis
of large high-dimensional data sets, finding patterns in data,
and discovering good feature sets for classification, some
common tasks in signal processing include removal of inter-
ference from signals, transforming signals into more suitable
representations for various purposes, and analyzing and ex-
tracting some characteristics from signals.

Of importance in signal processing is the optimal design
of operators under various criteria and constraints. That is,
given a “true” signal and its noise-corrupted version, the goal
is to find an optimal estimator, from some class of estimators
(constraint), such that when it is applied to the noisy signal,
some error (criterion) between its output and the true signal
is minimized. Alternatively, if a representative signal is not
available for training, armed with only the knowledge of the
noise characteristics and a class of operators, the goal is to
select an optimal estimator under a different criterion, such
as minimizing the variance of the noise at its output.

Though these approaches have much in common with
machine learning and statistical estimation theory, the nature
of the constraints and criteria, and consequently the ensu-
ing theory and algorithms, are guided by application-specific
needs, such as detail and edge preservation, robustness to
outliers, and other statistical and structural constraints. At
the same time, much of the theory behind signal processing,
in particular nonlinear digital filters, is tightly intertwined
with dynamical systems theory, involving constructs such as
finite and cellular automata.

It is clear that signal processing theory, tools, and meth-
ods can make a fundamental contribution to gene-expres-
sion-based classification and network modeling. Needless to
say, traditional signal processing approaches, such as trans-
form theory, can play an important role in other genomic
applications, such as DNA or protein sequence analysis [45,
46, 47]. It is our belief that researchers with a background in
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signal processing have the potential to make significant con-
tributions and bring their unique perspectives to this exciting
and important field.
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