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Abstract: High-throughput technologies for genomics provide tens of thousands of genetic measurements, for instance, 

gene-expression measurements on microarrays, and the availability of these measurements has motivated the use of ma-

chine learning (inference) methods for classification, clustering, and gene networks. Generally, a design method will yield 

a model that satisfies some model constraints and fits the data in some manner. On the other hand, a scientific theory con-

sists of two parts: (1) a mathematical model to characterize relations between variables, and (2) a set of relations between 

model variables and observables that are used to validate the model via predictive experiments. Although machine learn-

ing algorithms are constructed to hopefully produce valid scientific models, they do not ipso facto do so. In some cases, 

such as classifier estimation, there is a well-developed error theory that relates to model validity according to various sta-

tistical theorems, but in others such as clustering, there is a lack of understanding of the relationship between the learning 

algorithms and validation. The issue of validation is especially problematic in situations where the sample size is small in 

comparison with the dimensionality (number of variables), which is commonplace in genomics, because the convergence 

theory of learning algorithms is typically asymptotic and the algorithms often perform in counter-intuitive ways when 

used with samples that are small in relation to the number of variables. For translational genomics, validation is perhaps 

the most critical issue, because it is imperative that we understand the performance of a diagnostic or therapeutic proce-

dure to be used in the clinic, and this performance relates directly to the validity of the model behind the procedure. This 

paper treats the validation issue as it appears in two classes of inference algorithms relating to genomics – classification 

and clustering. It formulates the problem and reviews salient results. 
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1. INTRODUCTION 

 Over the last few decades, improvements in measurement 

technologies have made it possible to gather ever greater 

detailed molecular information characterizing the state of the 

genome and determining the presence, absence, abundance 

and modification levels of the RNA and protein species be-

ing expressed in cells from normal and diseased tissue. A 

current international research focus is to determine how to 

exploit these capabilities in order to aid physicians in form-

ing more detailed diagnoses of diseases with complex causa-

tion, thereby leading to more accurate prognosis and choice 

of therapeutics for treatment. The use of genomic informa-

tion to develop mechanistic understandings of the relation-

ships between genes, proteins and disease is already standard 

for a number of diseases. A mechanistic view that captured 

the straightforward way in which the relationships between 

genes, proteins and metabolites could be exploited in herita-

ble diseases of metabolism was clearly formulated by Garrod 

in 1902 in a report of his study of alcaptonuria, a condition 

arising from the inability to catabolize homogentisic acid [1] 

and was widely disseminated through his later book, Inborn 

errors of metabolism [2]. Energetic collaborations between 

biochemists, enzymologists and geneticists used their abili- 
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ties to monitor the accumulation of metabolites and the lethal 

effects of mutations that disable critical metabolic steps to 

build a very detailed understanding of the biochemistry and 

genomics of metabolism in bacteria and fungi. This enabled 

the construction of very accurate tests to diagnose the human 

disorders that arise when core metabolic genes are mutated. 

In the developed nations, a panel of such tests is typically 

carried out on each newborn.  

 This basic strategy of connecting genetic and protein 

information with information about the molecular patholo-

gies underlying diseases has also been successfully em-

ployed to allow the description and diagnosis of other types 

of conditions arising from genomic alterations, such as 

Down’s Syndrome [3], and chronic myelogenous leukemia 

(CML) [4]. In all of these cases, an investigator finds the 

disease by noting that the distribution of the alteration within 

the population closely follows the distribution of diseased 

individuals within the population. Ways to test for and 

evaluate this kind of relationship have been extensively re-

searched and developed in statistics. The use of this type of 

statistical method is common in medicine, not only in diag-

nostics, but also in evaluation of potential therapeutics such 

as drugs. Physicians are well acquainted with the basis of 

these analyses and have a practical knowledge of how well 

these analyses perform from their direct experience of the 

actual success and failure of therapeutics in their own hands 

as compared to the estimates from trials. A reasonable ex-
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pectation of clinicians is that methods for diagnostic, prog-

nostic and therapeutic utility decisions they will use in the 

future will be at least as well characterized for reliability as 

the ones currently available. 

 Ideally, decision-making procedures for diseases of com-

plex causation that use classifiers based on genomic and pro-

teomic features will translate into diagnostic, prognostic and 

therapeutic-decision tests that can be applied in a general 

patient population. Within this realm of application, there are 

two pivotal issues to consider. First, it will be necessary to 

develop clear understandings of how such classifiers can be 

formed and their accuracy established. Second, once a classi-

fier of a given level of accuracy is developed, it will be nec-

essary to evaluate its patterns of error on the various subsets 

of the patient population. 

 It is already apparent that even identifying the compo-

nents to produce the best classifier that can be formed from a 

set of molecular survey observations is virtually impossible. 

Attempts to find fuller descriptions of the molecular pathol-

ogy of complex diseases such as breast cancer, Huntington’s 

and Alzheimer’s are ongoing in many research institutions. 

In these types of disease, simple, direct mechanistic relation-

ships between the proximate causes of the disease and the 

ensuing molecular pathology are not as easily established as 

in many metabolic diseases. In these more complex diseases, 

the pathology develops over long periods of time in response 

to the proximate causes, evolving in ways that have both 

general similarities and combinations of partially shared and 

idiosyncratic molecular features among the patients [5-8].  

 Another important consequence of the evolution of these 

diseases is that altered function is evident in a wide variety 

of cellular processes. In cancer it is typical to see alterations 

in the mechanics of proliferation signaling, survival/death 

signaling, error checking and metabolism. When faced with 

a diagnosis that only identifies a broad class of disease that 

may be extremely heterogeneous in its molecular pathology, 

the practitioner cannot accurately predict the course and se-

verity of the disease or the best course of therapy for a par-

ticular patient. The strategy being applied to these diseases is 

to link genomic, proteomic and clinical observations to pro-

duce a finer grain diagnosis based on more uniform molecu-

lar pathology features that will provide practitioners with 

more insight into the likely course, severity and treatment 

vulnerability of each diagnostic type. The approach is based 

on identifying patterns of cellular phenotype alterations that 

result from the subsequent alterations in the patterns of ex-

pression and modification of RNA and protein that arise di-

rectly from genomic alterations, or indirectly from altered 

regulation of genomic function. This approach is based on 

the expectation that disease pathology requires alteration of 

the normal cellular phenotype and that just as in the cases of 

Down’s Syndrome, and CML, the resulting pathologic phe-

notype exhibits alterations in its constituent RNA and protein 

components [9, 10].  

 The availability of various microarray technologies that 

allow simultaneous measurements of the abundance of many 

mRNA species present in a tissue has enabled considerable 

exploratory work to establish that patterns of mRNA abun-

dance appear to be linked to various aspects of cancer pheno-

types. These include the tissue of origin of the tumor [11, 

12], pathological subclasses of tumors [13, 14], traditional 

clinical features [15], treatment susceptibility [16], and pro-

gnosis [7, 14, 17]. While it seems likely that ways can be 

developed to convert these apparent associations to quantita-

tively characterized tests, a considerable complexity problem 

is associated with this translation. The situation is exacer-

bated by sample sets that likely contain substantially differ-

ing types of molecular pathologies, each of which will 

probably require multiple features to recognize. Much initial 

work in the area has relied on non-predictive methods de-

signed for identifying gross trends in the data, such as clus-

tering, principal component analysis, multidimensional scal-

ing, and the like. There have also been efforts to use predic-

tive methods, such as classification; however, these have 

been carried out under conditions, such as very small sam-

ples, not conducive to many existing methods [18]. Exam-

ples of the issues facing gene-based classification are com-

plex classifier design [19], error estimation [20, 21], and 

feature selection [22-24].  

 Taking a general scientific perspective, if we loosely de-

fine genomics as the study of large sets of genes with the 

goal of understanding collective gene function, as opposed to 

just that of individual genes, then in comparison to classical 

genetics, gene biology has moved into an entirely new realm, 

one fraught with theoretical and experimental difficulties. 

The scale of system integration confronting us is far greater 

than any human-built system, and thus we have little intui-

tive understanding of how it is accomplished. Not only is the 

dimensionality greater by orders of magnitude than that ex-

perienced by human beings in their everyday, common sense 

experience, but the system exhibits control that is multivari-

ate, nonlinear, and distributed. Add to this the inherent 

model stochasticity, and one is inexorably confronted in ge-

nomics by a science whose basic tenets must be approached 

in the context of high-dimensional stochastic nonlinear dy-

namical systems. Based upon experience, nothing could be 

more daunting. 

 In the past one might have accepted a biological episte-

mology in which a proposed system could be evaluated by 

reasoning about it in relation to gathered data. That is, the 

validity of a proposed model could be asserted based on is 

reasonableness. Such an epistemology cannot be entertained 

when one is dealing with high-dimensional stochastic dy-

namical systems because one cannot expect the behavior of 

such a system to behave “reasonably.” The number of vari-

ables, their multivariate interaction, and the probabilistic 

nature of the resulting state space make it impossible for 

human intuition to assert the degree to which system behav-

ior is consistent with the physical behavior of the observ-

ables to which its variables correspond. Quoting Dougherty 

and Brag-Neto [25], “Human intuition and vocabulary have 

not developed with reference to any experience at the suba-

tomic level or the speed of light, nor have they developed 

with reference to the kinds of massive nonlinear systems 

encountered in biology. The very recent ability to observe 
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and measure complex, out of the ordinary phenomena neces-

sitates scientific characterizations that go beyond what seems 

‘reasonable’ to ordinary understanding.” This is not to say 

that model construction does not require keen insight and 

creativity, only that inter-subjective model validation will 

require a formal validation procedure. Even for such a sim-

ple gene regulatory network model as the Boolean model 

[26, 27], slight changes in the model parameters can result in 

startlingly different long-run behavior, and it would be fruit-

less for scientists to debate the efficacy of the model in a 

particular application without verifying that it produces 

steady-state behavior that is predictive of that experimentally 

observed. The validity of a scientific model rests on its abil-

ity to predict behavior. The criteria of validity must be rigor-

ously formulated. These may vary depending on ones goals. 

In this sense validity possesses a pragmatic aspect. For in-

stance, it may be that we desire a network model whose 

steady-state behavior models steady-state behavior of a cell. 

Should this be the case, our characterization of validity will 

be less stringent than if we insist that model predictions agree 

for both transient and steady-state measurements. Moreover, 

owing to the inherent stochastic nature of the modeling, va-

lidity criteria must be set in a probabilistic framework.  

 Owing to the complexity and sheer magnitude of the 

variables and relations within genomics, it is evident that the 

representation of the relations will require complex mathe-

matical systems, such as differential-equation and graphical 

models, which ultimately means that computational biology 

(or systems biology) will provide the theoretical ground. But 

this in turn means that the science of genomics will find its 

expression within a contemporary epistemology of computa-

tional biology, one that is based on predictive models, not a 

posteriori explanations [25]. The relations between variables 

that constitute the scientific knowledge will be described 

within a mathematical model. Just as importantly, the con-

nection between the model and the biological universe will 

be manifested via measurable consequences of the theory; 

that is, the abstract mathematical structure constituting the 

theory must be checked for its concordance with sensory 

observations. This is accomplished by making predictions 

from the theory that correspond to experimental outcomes. 

To constitute scientific knowledge, the model must be vali-

dated.  

 Currently in genomics, validation is problematic. Mehta, 

Murat, and Allison write [28], “Many papers aimed at the 

high-dimensional biology community describe the develop-

ment or application of statistical techniques. The validity of 

many of these is questionable, and a shared understanding 

about the epistemological foundations of the statistical 

methods themselves seems to be lacking.” In this paper we 

review the state of validation for two computational para-

digms currently being extensively employed in genomics: 

classification and clustering. Two points will become clear: 

first, insufficient attention has been paid to validation; and 

second, where suitable validation methodologies exist, too 

little attention is being paid to them in genomic science. 

Clustering provides an instance of the first point, where for 

the most part clustering has been applied without concern for 

predictive validation, and where so-called “validation indi-

ces” have been applied without attention being paid as to 

whether these “validation indices” provide any validation in 

the scientific sense. Classification provides an instance of the 

second point, where validation inheres in the process of error 

estimation and estimation procedures have been applied 

without regard for their precision, imprecision being a mani-

festation of invalidity.  

2. CLASSIFICATION 

 Expression-based classification involves a classifier that 

takes a vector of gene expression levels as input and outputs 

a class label, or decision. For a typical example, we consider 

patient data from a microarray-based classification study that 

analyzes microarrays prepared with RNA from breast tumor 

samples from 295 patients [29]. Of the 295 microarrays, 115 

belong to the “good-prognosis” class and 180 belong to the 

“poor-prognosis” class. From the original published data set, 

the expression profiles of 70 genes were found to be the 

most correlated with disease outcome [30]. From among 

these 70, two genes, LOC51203 and Contig38288_RC (AN), 

have been found to be the most discriminating for linear 

classification, the result of classifier design via linear dis-

criminant analysis (LDA) being shown in Fig. (1), with re-

ported estimated error 0.0582 [31]. In this case, given such a 

simple classifier, the sample used to design the classifier and 

estimate the error is fairly large and one might feel confident 

that the designed classifier will work with approximately the 

same performance on the population as it does on the sam-

ple; namely, its error on the population will agree with the 

error estimate obtained from the sample; however, much 

smaller sample sizes are commonplace in the literature. For 

instance, Fig. (2) shows a linear gene-expression classifier 

for separating CD5
+
 and CD5  diffuse large B-cell lympho-

mas (DLBCLs) using two genes, integran 1 and CD36, 

where the sample consists of 11 and 9 patients for CD5
+
 and 

CD5 , respectively, with reported estimated error 0.141 [32].  

 

 

 

 

 

 

 

 

 

Fig. (1). Linear classifier separating patients with good and bad 
prognosis using two genes. 
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Fig. (2). Linear classifier separating CD5
+
 and CD5  DLBCLs. 

Given the small sample, making claims about classifier per-

formance (error) on the population is problematic. We are 

confronted by the issue of classifier model validity, which 

relates directly to the quality of error estimation [25]. 

 Before addressing the question formally, let us step back 

and consider what lies behind a classifier such as the ones 

depicted in Figs. (1 and 2). To do so, let us leave the particu-

lar studies and consider expression-based classification from 

a generic perspective. Suppose we wish to discriminate be-

tween phenotypes A0 and A1, and we have strong biological 

evidence to believe that the different phenotypes result from 

production of a single protein P controlled by transcription 

factors, X1 and X2. Specifically, when X1 and X2 bind to the 

regulatory region for gene G, the gene expresses, the corre-

sponding mRNA is produced, and this translates into the 

production of protein P, thereby resulting in phenotype A1; 

on the other hand, in the absence of either X1 or X2 binding, 

there is no transcription and phenotype A0 is manifested. A 

simple quantitative interpretation of this situation is that 

there exist expression levels 1 and 2 such that phenotype 

A1 is manifested if X1 > 1 and X2 > 2, whereas A0 is mani-

fested if either X1  1 or X2  2. These conditions charac-

terize the desired classifier, defined by (X1, X2) = 1 if X1 > 

1 and X2 > 2, and (X1, X2) = 0 if X1  1 or X2  2, where 

phenotype is treated as a binary target variable Y with Y = 0 

corresponding to A0 and Y = 1 corresponding to A1. If these 

conditions were to strictly hold, then the classifier would 

have error [ ] = 0; however, owing to concentration fluc-

tuations, time delays, and the effects of other variables, one 

cannot expect to have a perfect classifier. Hence, the actual 

error would be of the probabilistic form 

[ ] = P(Y = 0| X1 > 1 and X2 > 1) + P(Y = 1| X1  1 or X2 

 2)             (1) 

 Were the joint distribution for the transcription factors 

and phenotype known, this error could then be directly com-

puted. The result would be a classifier model consisting of 

the classifier  and its error [ ]. 

 From a practical perspective, the preceding scenario is 

highly idealized. Let us examine what happens when we 

back off the idealization. First, assume that we do not know 

the joint distribution of the transcription factors and pheno-

type. In this case the error has to be estimated. This could be 

done by taking a data sample consisting of points of the form 

((X1, X2), Y), transcription vector and phenotype, applying 

the classifier to each transcription pair (X1, X2) to arrive at a 

predicted phenotype (X1, X2), and taking the error estimate 

][ˆ  as the proportion of incorrect predictions. The propor-

tionality estimation procedure is called an error estimation 

rule. Whereas in the first scenario the full model, classifier 

and error, are derived from theoretical considerations, in the 

second, the classifier is derived from theoretical considera-

tions but the error is estimated from data. If the data set is 

very large, then we can expect the error estimate to be very 

close to the true error, meaning that the expected deviation 

E[| ][ˆ   [ ]|] is small; however, if the data set is small, 

we cannot expect E[| ][ˆ   [ ]|] to be small. Thus, in a 

sense that must be rigorously defined, the validity of the 

model ( , ][ˆ ) relates to the quantity of data used to arrive 

at the estimate, as well as the difficulty of making the esti-

mate.  

 Suppose that we do not know the thresholds 1 and 2, 

only that phenotype A1 occurs if and only if the transcription 

factors are both sufficiently expressed. Then we could pro-

ceed by developing a procedure, called a classification rule, 

that upon being applied to sample data, called training data, 

yields estimates, 
1

ˆ  and 
2

ˆ , of 1 and 2, respectively. This 

would provide us with a classifier, est, that is an estimate of 

the desired classifier, . Going further, we might not have 

any biological knowledge that gives us confidence that the 

classifier should be of the form (X1, X2) = 1 if and only if 

X1 > 1 and X2 > 2. In this typical scenario, we need to use a 

classification rule that assumes some “reasonable” form for 

the classifier, such as a linear classifier, and then estimates 

the particulars of the classifier from training data. In either 

case, to obtain an estimate, ][ˆ est
 of the error, [ est], of 

est, we could either take additional sample data, called test 

data, to form the estimate via some error estimation rule, or 

we could simply apply some error estimation rule to the 

training data. Given no limitations on cost or data availabil-

ity, we would like to have large samples for both classifier 

design and error estimation; however, in practice, this is of-

ten impossible. In expression-based classification, data are 

usually severely limited, so that holding out test data results 

in unacceptably poor classifier design. Thus, design and er-

ror estimation must be done on the same training data. This 

has consequences for validity because validity relates to the 

accuracy of the error estimate.  

3. VALIDITY OF CLASSIFIER MODELS 

 Having motivated the discussion of validity with a ge-

neric transcription example, we now turn to a formal analysis  
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of the issues. We begin by providing a brief description of 

the probabilistic theory of classification [33]. Classification 

involves a feature vector X = (X1, X2, ..., Xd) on d-

dimensional Euclidean space 
d
 composed of random vari-

ables (features), a binary random variable Y, and a function 

(classifier) : 
d
  {0, 1} for which (X) is to predict Y. 

The values, 0 or 1, of Y are treated as class labels. Given a 

feature-label distribution fX,Y(x, y), the error, f[ ], of  is 

the probability of erroneous classification, namely, f[ ] = 

P( (X)  Y). The error is relative to a feature-label distribu-

tion fX,Y. It equals the expected (mean) absolute difference, 

E[|Y  (X)|], between the label and the classification. Ow-

ing to the binary nature of (X) and Y, it also equals the 

mean-square error. A classifier  is optimal (best) for a fea-

ture-label distribution fX,Y if f[ ]  f[ ] for any classifier : 
d
  {0, 1}. An optimal classifier, f, of which there may 

be more than one, and its error, f[ f], are deducible via inte-

gration from the feature-label distribution. These are called a 

Bayes classifier and the Bayes error, respectively.  

 To address validity in the context of classification, we 

need an appropriate definition of the model. We define a 

classifier model M = ( , ) to be a pair composed of a func-

tion : 
d
  {0, 1} and a real number   [0, 1] [25].  

and  are called the classifier and error, respectively, of the 

model M. The mathematical form of the model is abstract, 

with  not specifying an actual error probability correspond-

ing to . M becomes a scientific model when it is applied to 

a feature-label distribution. The model is valid for the distri-

bution fX,Y to the extent that  approximates f[ ]. Hence, 

quantification of model validity is relative to the absolute 

difference | f[ ]  |.  

 In practical applications, the feature-label distribution is 

usually unknown, so that a classifier and its error are gener-

ally discovered via classification and error estimation rules. 

Given a random sample Sn = {(X1, Y1), (X2, Y2), …, (Xn, Yn)} 

of pairs drawn from a feature-label distribution fX,Y(x, y), we 

desire a function on Sn that yields a good classifier. The ran-

domness of Sn means that any particular sample Sn is a reali-

zation of Sn . A classification rule is a mapping of the form 

: [
d
  {0, 1}]

n
  Fd, where Fd is the family of {0, 1}-

valued functions on 
d
. Given a specific sample Sn of Sn, we 

obtain a designed classifier n = (Sn) according to the rule 

. The classifier is then of the form (Sn; X). To simplify 

notation, we write n(X) instead of (Sn; X), keeping in 

mind that the classifier has been designed from a sample. 

Note that a classification rule is really a sequence of classifi-

cation rules depending on n. The error term  in the model 

M = ( , ) is estimated by an estimation rule, : [
d
  {0, 

1}]
n
  [0, 1]. Although there is no logical necessity, we will 

assume that the classifier is part of the estimation rule (else 

one would be estimating the error independent of the classi-

fier). Altogether, we arrive at a scientific model M = ( , ) 

via a creative act that postulates a rule model L = ( , ) and 

then via computation from a data sample arrives at the scien-

tific model.  

 We must consider the validity of a classifier model M = 

( , ) under the assumption that both  and  have been 

arrived at via the rule model L = ( , ). Thus, we consider 

the model Mn = ( n, ˆ [ n]), where n = (Sn) and ˆ [ n] = 

(Sn) for sample data set Sn. Model validity relates to the 

precision of  as an estimator of f[ n]: if an estimation rule 

is expected to yield an error close to the true error of the de-

signed classifier, then we have confidence in the validity of 

the model. Relative to validity, we are concerned with the 

precision of the error estimator ˆ [ n] in the model Mn = ( n, 

ˆ [ n]), which can be considered random, depending on the 

sample.  

 The precision of the estimator relates to the difference 

between ˆ [ n] and f[ n], and we require a probabilistic 

measure of this difference. Here we use the root-mean-

square error (square root of the expectation of the squared 

difference),  

 RMS( , , f, n) = ]|][][ˆ[| 2

nfnE          (2) 

 Error-estimation precision depends on the classification 

rule , error estimation rule , feature-label distribution f, 

and sample size n.  

 It is helpful to understand the RMS in terms of the devia-

tion distribution, ˆ [ n]  f[ n]. The RMS can be decom-

posed into the bias, Bias[ ˆ ] = E[ ˆ [ n]  f[ n]] of the error 

estimator relative to the true error, and the deviation vari-

ance, Vardev[ ˆ ] = Var[ ˆ [ n]  f[ n]], namely,  

 RMS( , , f, n) = 2]ˆ[]ˆ[ + BiasVardev
        (3) 

where we recognize that , , f, and n are implicit on the 

right-hand side. 

 There are rare instances in which, given the feature-label 

distribution, the exact analytic formulation of the RMS is 

known. Here we consider multinomial discrimination, where 

the feature components are random variables with discrete 

range {0, 1, …, b  1}, corresponding to choosing a fixed-

partition in 
d
 with b cells, and the histogram rule assigns to 

each cell the majority label in the cell. Exact analytic formu-

lations of the RMS for resubstitution and leave-one-out error 

estimation are known [34]. The expressions are complicated 

and we omit them. As we expect, they show that the RMS 

decreases for decreasing b. They also show that for a wide 

range of distributions, resubstitution outperforms leave-one-

out for 4 and 8 cells. Rather than just give some anecdotal 

examples for different distributions, we consider a paramet-

ric Zipf model, which is a power-law discrete distribution 

where the parameter controls the difficulty of classification. 

Fig. (3) shows the RMS as a function of the expected true 

error computed for a number of distinct models of the para-

metric Zipf model for n = 40 and b = 8. Their performances 

are virtually the same (resubstitution slightly better) for 

f[ n]  0.3, which practically means equivalent performance 

in any situation where there is acceptable discrimination. For  
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b = 4 (not shown), resubstitution outperforms leave-one-out 

across the entire error range and for b = 16 (not shown) re-

substitution is very low-biased and leave-one-out has better 

performance. For the Boolean model for gene regulation, b = 

2, 4, 8, and 16 correspond to network connectivity 1, 2, 3, 

and 4, respectively, connectivity being the number of genes 

that predict the state of any other gene in the network. Since 

in practice connectivity is often bounded by 3 and there is 

need to estimate the errors of tens of thousands of predictor 

functions, there is a big computational benefit in using re-

substitution, in addition to better prediction for 1 and 2 pre-

dictors. 

 

 

 

 

 

 

 

 

 
Fig. (3). RMS as a function of the expected true error computed for 

a number of distinct models of the parametric Zipf model for n = 40 

and b = 8. Cross marker: resubstitution; circle marker: leave-one-
out. 

4. GOODNESS OF CLASSIFIER MODELS 

 A model may be valid relative to the RMS of the error 

estimator being small; however, is it any good? The quality 

of goodness does not apply to the model M, but only to the 

classifier. Classifier  is better than classifier  relative to 

the distribution f if f[ ] < f[ ]. Obviously, a Bayes classi-

fier is best among all possible classifiers. We need to con-

sider goodness of classifier  in the model M = ( , ) under 

the assumption that both  and  have been arrived at via 

the rule model L = ( , ). Note that it is just as well to com-

pare f[ ]  f[ f] to f[ ]  f[ f], as compare f[ ] to f[ ], 

both of which exceed the Bayes error f[ f]. Hence, the rela-

tive goodness of a designed classifier n can be measured by 

its design cost f,n = f[ n]  f[ f]. From the perspective of 

the classification rule, f,n and f[ n] are sample-dependent 

random variables. Thus the salient quantity for a classifica-

tion rule is the expected design cost, E[ f,n], the expectation 

being relative to the random sample Sn. The expected error 

of the designed classifier is decomposed as 

 E[ f[ n]] = f[ f] + E[ f,n]           (4) 

Qualitatively, a rule is good if E[ f,n] is small.  

 A well-known difficulty with small-sample design is that 

E[ f,n] tends to be unacceptably large. A classification rule 

may yield a classifier that performs well on the sample data; 

however, if the small sample does not generally represent the 

distribution sufficiently well, then the designed classifier will 

not perform well on the distribution. This phenomenon is 

known as overfitting the sample data. Relative to the sample 

the classifier possesses small error; but relative to the fea-

ture-label distribution the error may be large. The overfitting 

problem is not necessarily overcome by applying an error-

estimation rule to the designed classifier to see if it “actu-

ally” performs well, since error-estimation rules are very 

imprecise in small-sample settings. Even with a low error 

estimate, is one sufficiently confident in the accuracy of that 

estimate to overcome the large expected design error owing 

to using a complex classifier with a small data set? We need 

to consider classification rules that are constrained so as to 

reduce overfitting. 

 Constraining classifier design means restricting the func-

tions from which a classifier can be chosen to a class C. Con-

straint can reduce the expected design error, but at the cost of 

increasing the error of the best possible classifier. Since op-

timization in C is over a subclass of classifiers, the error of 

an optimal classifier, C, in C will typically exceed the Bayes 

error, unless f  C. This cost of constraint is C

f
 = f[ C]  

f[ f]. A classification rule yields a classifier n,C  C with 

error f[ n,C], and f[ n,C]  f[ C]  f[ f]. Design error for 

constrained classification is f,C,n = f[ n,C]  f[ C]. For 

small samples, this can be much less than f,n, depending on 

C and the rule. The expected error of the designed classifier 

from C can be decomposed as 

 E[ f[ n,C]] = f[ f] + C

f
 + E[ f,C,n]          (5) 

 The constraint is beneficial if and only if E[ f[ n,C]] < 

E[ f[ n]], which is true if the cost of constraint is less than 

the decrease in expected design cost. The dilemma is that 

strong constraint reduces E[ f,C,n] at the cost of increasing 
C

f
.  

 Generally speaking, the more complex a class C of classi-

fiers, the smaller the constraint cost and the greater the de-

sign cost. By this we mean, the more finely the functions in C 

partition the feature space 
d
, the better functions within it 

can approximate the Bayes classifier and, concomitantly, the 

more they can overfit the data. As it stands, this statement is 

too vague to have a precise meaning. Since our interest in 

this paper is validity (therefore, error estimation), let us sim-

ply note a celebrated theorem that provides bounds for 

E[ f,C,n]. It concerns the empirical-error classification rule, 

which chooses the classifier in C that makes the least number 

of errors on the sample data. For this (intuitive) rule, E[ f,C,n] 

satisfies the bound  

 E[ f,C,n]  
n

nV

2

4log
4

+
C           (6) 
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where VC is the VC (Vapnik-Chervonenkis) dimension of C 

[19]. We will not go into the details of the VC dimension, 

except to say that it provides a measure of classifier com-

plexity. It is clear from Eq. 6 that n must greatly exceed VC 

for the bound to be small. The VC dimension of a linear 

classifier is d + 1. For a neural network with an even number 

k of neurons, the VC dimension has the lower bound VC  dk. 

If k is odd, then VC  d(k  1). Thus, for a even number of 

neurons, we deduce from Eq. 6 that the bound exceeds 

4 nndk 2log , which is not promising for small n.  

5. BEHAVIOR OF TRAINING-DATA ERROR ESTI-

MATORS 

 In this section we will consider the deviation distribu-

tions of some well-known training-data-based error estima-

tors and compare their biases and variances.  

 Upon designing a classifier n from the sample, the re-

substitution estimate, res

n
ˆ , is given by the fraction of errors 

made by n on the sample. The resubstitution estimator is 

typically low-biased, meaning E[ res

n
ˆ ] < E[ f[ n]], and this 

bias can be severe for small samples, depending on the com-

plexity of the classification rule.  

 Cross-validation is a re-sampling strategy in which (sur-

rogate) classifiers are designed from parts of the sample, 

each is tested on the remaining data, and classifier error is 

estimated by averaging the errors. In k-fold cross-validation, 

the sample Sn is partitioned into k folds S(i), for i = 1, 2,…, k. 

Each fold is left out of the design process and used as a test 

set, and the estimate, )(ˆ kcv

n
, is the average error committed 

on all folds. A k-fold cross-validation estimator is unbiased 

as an estimator of E[ f[ n n/k]], meaning E[ )(kcv

n
] = 

E[ f[ n n/k]], where E[ f[ n n/k]] is the error arising from de-

sign on a sample of size n  n/k. The special case of n-fold 

cross-validation yields the leave-one-out estimator, loo

n
ˆ , 

which is an unbiased estimator of E[ f[ n 1]]. While not suf-

fering from severe bias, cross-validation has large variance 

in small-sample settings, the result being high RMS [20]. In 

an effort to reduce the variance, k-fold cross-validation can 

be repeated using different folds, the final estimate being an 

average of the estimates.  

 Bootstrap is a general re-sampling strategy that can be 

applied to error estimation [35]. A bootstrap sample consists 

of n equally-likely draws with replacement from the original 

sample Sn. Some points may appear multiple times, whereas 

others may not appear at all. For the basic bootstrap estima-

tor, b

n
ˆ , the classifier is designed on the bootstrap sample and 

tested on the points left out, this is done repeatedly, and the 

bootstrap estimate is the average error made on the left-out 

points. b

n
ˆ  tends to be a high-biased estimator of E[ f[ n]], 

since the number of points available for design is on average 

only 0.632n. The .632 bootstrap estimator tries to correct 

this bias via a weighted average of b

n
ˆ  and resubstitution 

[36], 

 ˆ
n
b632

= 0.368 ˆn
res
+ 0.632 ˆn

b
           (7) 

Looking at Eq. 7, we see that the .632 bootstrap is a convex 

combination of a low-biased and high-biased estimator. As 

such it is a special case of a convex estimator, the general 

form of which is 

 high

n

low

n

ba

n ba += ˆˆˆ ,            (8) 

[37]. Given a feature-label distribution, a classification rule, 

and low and high-biased estimators, an optimal convex esti-

mator is found by finding the weights a and b that minimize 

the RMS. 

 In resubstitution there is no distinction between points 

near and far from the decision boundary; the bolstered-

resubstitution estimator is based on the heuristic that, rela-

tive to making an error, more confidence should be attributed 

to points far from the decision boundary than points near it 

[38]. This is achieved by placing a distribution, called a bol-

stering kernel, at each point and estimating the error by inte-

grating the bolstering kernels for all misclassified points 

(rather than simply counting the points as with resubstitu-

tion). A key issue is the amount of bolstering (spread of the 

bolstering kernels), and a method has been proposed to com-

pute this spread based on the data. Fig. (4) illustrates the 

error for linear classification when the bolstering kernels are 

uniform circular distributions. When resubstitution is heavily 

low-biased, it may not be good to spread incorrectly classi-

fied data points because that increases the optimism of the 

error estimate (low bias). The semi-bolstered-resubstitution 

estimator results from not bolstering (no spread) for incor-

rectly classified points. Bolstering can be applied to any er-

ror-counting estimation procedure. Bolstered leave-one-out 

estimation involves bolstering the resubstitution estimates on 

the surrogate classifiers.  

 

 

 

 

 

 

 

 

 

 

Fig. (4). Bolstered resubstitution for linear classification.  

 To demonstrate small-sample error-estimator perform-

ance for continuous models, we provide simulation results 
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for the distribution of the deviation 
n

ˆ   E[ f[ n]], in which 

the error estimator 
n

ˆ  is one of the following: resubstitution 

(resub), leave-one-out (loo), 10-fold cross-validation with 10 

repetitions (cv10r), .632 bootstrap (b632), bolstered resubsti-

tution (bresub), semi-bolstered resubstitution (sresub), or 

bolstered leave-one-out (bloo). Bolstering utilizes Gaussian 

bolstering kernels. Based upon the patient data correspond-

ing to Fig. (1), the simulations use log-ratio gene-expression 

values associated with the top 5 genes, as ranked by a corre-

lation-based measure. For each case, 1000 observations of 

size n = 20 and n = 40 are drawn independently from the 

pool of 295 microarrays. Sampling is stratified, with half of 

the sample points being drawn from each of the two progno-

sis classes. The true error for each observation of size n is 

approximated by a holdout estimator, whereby the 295  n 

sample points not drawn are used as the test set (a good ap-

proximation to the true error, given the large test sample). 

This allows computation of the empirical deviation distribu-

tion for each error estimator using the considered classifica-

tion rules. Since the observations are not independent, there 

is a degree of inaccuracy in the computation of the deviation 

distribution; however, for sample sizes n = 20 and n = 40 out 

of a pool of 295 sample points, the amount of overlap be-

tween samples is small (see [20] for a discussion of this 

sampling issue). Fig. (5) displays plots of the empirical de-

viation distributions for LDA obtained by fitting beta densi-

ties to the raw data. A centered distribution indicates low 

bias and a narrow distribution indicates low variance. Note 

the low bias of resubstitution and the high variance of the 

cross-validation estimators. These are generally outper-

formed by the bootstrap and bolstered estimators; however, 

specific performance advantages depend heavily on the clas-

sification rule and feature-label distribution. 

6. CONFIDENCE BOUNDS ON THE ERROR 

 A natural question to ask is what can be said of the true 

error, given the estimate in hand. This question pertains to 

the conditional expectation of the true error given the error 

estimate. In addition, one might be interested in confidence 

bounds for the true error given the estimate. These issues are 

addressed via the joint distribution of the true error and the 

estimated error, from which can be derived the marginal dis-

tributions, the conditional expectation of the estimated error 

given the true error, the conditional expectation of the true 

error given the estimated error, the conditional variance of 

the true error given the estimated error, and the 95% upper 

confidence bound for the true error given the estimated error 

[39]. The joint distribution concerns the random vector 

( n, ˆ n) of the true and estimated errors, n and ˆ n, respec-

tively. To obtain results reflecting what occurs in practice, 

where one does not know the feature-label distribution, we 

assume that the feature-label distribution is random, so that 

( n, ˆ n) depends on both the random choice of feature-label 

distribution and random sample from that distribution.  

 Of key concern is the conditional expectation, E[ n| ˆ n], 

of the true error given the estimated error, because in prac-

tice one has only the estimated error and, given this, E[ n| ˆ n] 

is the best mean-square-error estimate of the true error. An 

estimator might be low-biased from a global perspective, 

meaning it is low-biased relative to its marginal distribution, 

but it may be conditionally high-biased for certain values of 

the estimated error.  

 A second major concern is finding a conditional bound 

for the true error given the joint error distribution. In many 

settings, one is not primarily interested in the error of a clas-

sifier but is instead concerned with the error being less than 

some tolerance. For instance, in developing a prognosis test 

for survivability, one is not likely to be concerned as much 

with the exact error rate but rather that the error rate is be-

neath some acceptable bound. In this situation, typically low-

biased error estimators such as resubstitution are considered 

especially unacceptable. Less-biased, high-variance error 

estimators like cross-validation are also problematic because 

they will often significantly underestimate the true error.  

But here one must be cautious. If tolerance is the issue, 

rather than simply look at bias or variance, a more precise 

way to evaluate an error estimator is to consider a bound  

 

 

 

 

 

 

 

 

Fig. (5). Beta-distribution fits for the deviation distributions of several estimation rules. Left: n = 20; right: n = 40. 
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conditioned on the error estimate: given the error estimate 

ˆ n, we would like a conditional bound A , ,n on n of the 

form  

 P( n < A , ,n| ˆ n = ) = 1             (9) 

 The subscript n on the bound indicates that it is a func-

tion of the random sample. In this setting, a classification 

rule  is better than the rule  for ˆ n =  if A , ,n[ ] < 

A , ,n[ ].  is uniformly better than  over the interval [ 1, 

2] if A , ,n[ ] < A , ,n[ ] for all   [ 1, 2].  

 To illustrate the construction of conditional bounds (and 

some other issues in the sequel), we will consider two 

equally likely Gaussian class-conditional distributions with 

covariance matrices, K0 and K1. For the linear model, K1 = 

K0 and the Bayes classifier results from linear discriminant 

analysis (LDA); for the quadratic model, K1 = 2K0 and the 

Bayes classifier results from quadratic discriminant analysis 

(QDA). The particular model for any application depends on 

the choice of K0. The application depends on the classifica-

tion rule applied. 

 Here we consider the LDA classification rule applied to 

the quadratic model with 

 K0 = 
2

Q0

0Q
          (10) 

where is Q is a 5 5 matrix with 1 on the diagonal and  = 

0.25 off the diagonal. The classes are separated so that the 

expected Bayes error is 0.15. Because covariance matrices 

are different, the optimal classifier is quadratic. We consider 

several error estimators: leave-one-out cross-validation (loo), 

resubstitution (resub), 5-fold cross-validation with 20 repli-

cations (cv), 0.632 bootstrap (b632), bolstered resubstitution 

(bresub), and semi-bolstered resubstitution (sresub). The 

joint distributions have been estimated by massive simula-

tion on a Beowulf cluster.  

 

 Curves for the conditional expectation of the true error 

given the estimated error are shown in Fig. (6a), where the 

dotted 45-degree line corresponds to the conditional ex-

pected estimated error equaling the true error, the estimated-

error means are marked on the horizontal axis, and the true-

error mean is marked on the vertical axis. The key point is 

that the conditional expected true error varies widely around 

the estimated error across the range of the estimated error. 

The conditional expected true error is larger than the esti-

mated error for small estimated errors and is often smaller 

than the estimated error for large estimated errors. The 

curves of the high-variance cross-validation estimators begin 

well above the 45 degree and end well below it. 

 A second concern is the formation of conditional bounds 

for the true error. Curves for the conditional 0.95 bounds are 

shown in Fig. (6b) for the model being considered. As in the 

case of the conditional expected true error, the means of the 

estimated errors are marked on the horizontal axis in the fig-

ure, but here, besides the star marking the mean true error on 

the vertical axis, there are also marks giving the mean 0.95 

conditinal bounds across all estimated errors. Given an esti-

mated error, a lower bound is better. For most of the esti-

mated error range, and well beyond the mean of the true er-

ror, the semi-bolstered resubstitution bound is the best. What 

is perhaps most surprising, and not uncommon for other 

models and classification rules, is the closeness of the mean 

bounds on the vertical axis. While on average the conditional 

bounds for bolstered and semi-bolstered resubstitution are 

slightly lower than the others, there is not much difference, 

including the mean for the resubstitution bound. At first this 

might seem remarkable since the conditional-bound curve 

for resubstitution is so much above the other curves. But we 

must remember that the mean for the resubstitution estimate 

is much lower, so that the mass of the resubstitution estimate 

is concentrated towards the left of the conditional-bound 

curve, whereas the masses of the other estimates are concen-

trated much more towards the right of their conditional-

bound curves.  

 

 

 

 

 

 

 

 

 

 

(a)                       (b) 

Fig. (6). Conditional curves: (a) Conditional expectation of the true errors given the estimated errors; (b) Conditional 0.95 bounds for the true 
errors given the estimated errors. 
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7. BOUNDS FOR THE DEVIATION BETWEEN ES-

TIMATED AND TRUE ERRORS 

 Since the feature-label distribution can strongly affect the 

RMS and is unknown in practice, a distribution-free upper 

bound of the form RMS( , , f, n)  ),,( nRMS  can be 

useful, even if the inequality is likely to be loose.  

 For the resubstitution and leave-one-out estimators in the 

context of multinomial discrimination and the histogram 

rule, there exist classical upper bounds on the RMS: 

RMS( b, res, f, n)  RMS ( b, res, n) = 
n

b6        (11) 

RMS( b, loo, f, n)  RMS ( b, loo, n) = 

)1(

661 1

+
+

nn

e          (12) 

where b, res, and loo denote the histogram rule for b cells, 

resubstitution estimation rule, and leave-one-out estimation 

rule, respectively [33]. For n = 100, RMS ( b, loo, 100) = 

0.435, indicating the bound is not useful for small samples. 

The bounds contain asymptotic information. For instance, 

RMS ( b, res, n)  0 faster than RMS ( b, loo, n)  0 as n 

, indicating that resubstitution is better than leave-one-

out for large samples. For small samples, the resubstitution 

bound may still be less than the leave-one-out bound when 

the number of cells is small.  

 The k-nearest-neighbor rule assigns to a point the major-

ity label among its nearest k neighbors in the sample, and an 

upper bound on RMS is available for leave-one-out: 

RMS( kNN, loo, f, n)  RMS ( kNN, loo, n)  

= 
2

241

n

k

n
+           (13) 

[40]. For the popular choice k = 3, at n = 100, RMS ( 3NN, 

loo, 100) = 0.419. 

 The kernel rule computes the weight of each sample 

point on the target sample point based on a kernel function, 

and assigns the label of largest overall weight. For a regular 

kernel of bounded support and the leave-one-out estimator, 

the RMS is bounded by: 

RMS( kernel, loo, f, n)  RMS ( kernel, loo, n)  

=
n

CC

n

211
+           (14) 

where C1 and C2 are constants depending only on d and the 

kernel function, respectively [33].  

 Fig. (7) illustrates the conservativeness of the bounds by 

comparing the true RMS values with the bounds of Eqs. 11, 

12, and 13 for both the linear and quadratic models, with the 

covariance matrix being the one given by Eq. 10.  

8. RANKING FEATURE SETS 

 An important application is to rank gene sets based on 

their ability to classify phenotypes. Since there may be many 

gene sets that can provide good discrimination, one may 

wish to find sets composed of genes for which there is evi-

dence of their molecular relationship with the phenotype of 

interest. The idea is that good feature sets may provide good 

candidates for diagnosis and therapy. Given a family of gene 

sets discovered by some classification rule, the issue is to 

rank them based on error. Thus, a natural measure of worth 

for an error estimator is its ranking accuracy for feature sets 

[41, 42]. The measure will depend on the classification rule 

and the feature-label distribution. We use two measures of 

merit. Each compares ranking based on true and estimated 

errors – under the condition that the true error is less that t. 

)(1 tRK  is the number of feature sets in the truly top K feature 

sets that are also among the top K feature sets based on error 

estimation. It measures how well the error estimator finds 

top feature sets. )(2 tRK  is the mean-absolute rank deviation 

for the K best feature sets.  

 Again we consider the patient data associated with Fig. 

(1) and LDA classification. We consider all feature sets of 

size 3. For each sample of size 30 we obtain the LDA classi-

fier and obtain the true error from the distribution and esti-

mated errors based on resubstitution, cross-validation, boot-

strap, and bolstering. We use log-ratio gene expression val-

ues associated with the top 20 genes ranked according to 

[30]. The true error for each sample of size of 30 is approxi-

mated by a hold-out estimator, whereby the 265 sample 

points not drawn are used as the test set (a very good ap-

proximation to the true error, given the large test sample). 

Fig. (8) shows graphs obtained by averaging these measures 

over many samples [41]. Cross-validation is generally poorer 

than the .632 bootstrap, whereas the bolstered estimators are 

generally better. 

9. FEATURE SELECTION 

 In addition to complexity owing to the structure of the 

classification rule; complexity also results from the number 

of variables. This can be seen in the VC dimension, for in-

stance, of a linear classification rule whose VC dimension is 

d + 1, where d is the number of variables. This dimensional-

ity problem motivates feature (variable) selection when de-

signing classifiers. When used, a feature-selection algorithm 

is part of the classification rule, and, relative to this rule the 

number of variables is the number in the data measurements, 

not the final number used in the designed classifier. Feature 

selection results in a subfamily of the original family of clas-

sifiers, and thereby constitutes a form of constraint. Feature 

selection yields classifier constraint, not a reduction in the 

dimensionality of the feature space relative to design. Since 

its role is constraint, assessing the worth of feature selection 

involves us the standard dilemma: increasing constraint 

(greater feature selection) reduces design error at the cost of 

optimality. And we must not forget that the benefit of feature 

selection depends on the feature-selection method and how it 

interacts with the rest of the classification rule.  
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9.1. Peaking Phenomenon 

 A key issue for feature selection concerns error mono-

tonicity. The Bayes error is monotone: if A and B are feature 

sets for which A  B, then B  A, where A and B are the 

Bayes errors corresponding to A and B, respectively. 

However, if A,n and B,n are the corresponding errors result-

ing from designed classifiers on a sample of size n, then it 

cannot be asserted that A,n  B,n. It may even be that E[ B,n] 

> E[ A,n]. Indeed, it is typical for the expected design error to 

decrease and then increase for increasingly large feature sets. 
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Nonlinear model 
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Fig. (7). Comparison of the true RMS values (lower plane in each plot) with the universal RMS bounds (upper plane in each plot).  

 

 

 

 

 

 

(a)        (b) 

Fig. (8). Feature-ranking measures for breast-cancer data: (a) )(1 tRK ; (b) )(2 tRK . 
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Thus, monotonicity does not apply to designed classifiers. 

Moreover, even if A,n  B,n, this relation may be reversed 

when using estimates of the errors. 

 To more closely examine the lack of monotonicity for 

designed classifiers, consider a sequence, x1, x2,…, xd,…, of 

features, and a sequence, 1, 2,…, d,…, of classification 

rules, for which d yields a classifier possessing dependent 

variables x1, x2,…, xd, and the rule structure is independent of 

d – for instance, d is defined by quadratic discriminant 

analysis of dimension d or by the 3-nearest-neighbor rule of 

dimension d. What commonly (but not always) happens is 

that the greater complexity of the classification rule im-

proves classifier design up to a point, after which overfitting 

results in sufficiently increasing design error that design de-

teriorates. This decrease and then rise in error as the number 

of features increases is called the peaking phenomenon [43, 

44]. The optimal number of features depends on the classifi-

cation rule, feature-label distribution and sample size [45, 

46]. Typically (but not always), the optimal number of fea-

tures increases with the sample size. 

 To illustrate the commonplace understanding of the peak-

ing phenomenon and a couple of anomalies we employ both 

the linear and quadratic models, with the covariance matrix  

 K0 = 
2

1

10

1

1

01

1

O

       (15) 

of dimension 30. Features within the same block are corre-

lated with correlation coefficient  and features in different 

blocks are uncorrelated. There are m groups, with m being a 

divisor of 30. We denote a particular feature by xij, where i, 1 

 i  m, denotes the group to which the feature belongs and j, 

1  j  r, denotes its position in the group. We list the feature 

sets in the order x11, x21,…, xm1, x12,…, xmr. Since the maxi-

mum dimension considered is 30, the peaking phenomenon 

will only show up in the graphs for which peaking occurs 

with less than 30 features.  

 Fig. (9a) exhibits the typical understanding of peaking. It 

is for the LDA classification rule applied to the linear model 

with m = 5 groups,  = 0.125, and the variance 
2
 set to give 

a Bayes error of 0.05. For fixed sample size, the curve is 

concave, the optimal number of features is given by the 

unique minimum of the curve, and the optimal number in-

creases as the sample size increases. Note that the sample 

size must exceed the number of features to avoid degener-

acy. The situation is quite different in part (b) of the figure. 

Here, a linear support vector machine (SVM) is applied to 

the nonlinear model with m = 1 group,  = 0.25, and the 

variance 
2
 set to give a Bayes error of 0.05. First, the curves 

are not necessarily convex; and second, the optimal number 

of features does not decrease with an increasing sample size 

(and here are not referring to the slight wobble in the curve 

owing to error estimation). 

9.2. Feature-Selection Algorithms 

 In the preceding examples, we knew the distributions and 

ordered the features so as not to have to consider all possible 

feature sets; in practice, the features are not ordered and a 

good feature set must be found from among all possible fea-

ture subsets. Here we are confronted by a fundamental limit-

ing principle: to select a subset of k features from a set of d 

features and be assured that it provides an optimal classifier 

with minimum error among all optimal classifiers for subsets 

of size k, all k-element subsets must be checked unless there 

is distributional knowledge that mitigates the search re-

quirement [47]. The intractability of a full search leads to the 

necessity of suboptimal feature selection algorithms.  

 Many feature selection algorithms have been proposed in 

the literature. Here we consider only three. A simple method 

 

 

 

 

 

 

 

 

 

 

 

 

(a)        (b) 

Fig. (9). Optimal number of features: (a) LDA, linear model; (b) linear SVM, nonlinear model.  
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is simply to examine one feature at time via the t-test to de-

termine which features best separate the classes in a single 

dimension relative to separation of the means normalized by 

the variance in a given dimension. This method suffers from 

two drawbacks: (1) it may reject features that are poor in and 

of themselves but work well in combination with other fea-

tures; and (2) in can yield a list of redundant features. A 

common approach to overcome these drawbacks is sequen-

tial selection, either forward or backward, and their variants. 

Sequential forward selection (SFS) begins with a small set of 

features, perhaps one, and iteratively builds the feature set. 

When there are k features, x1, x2,…, xk, in the growing fea-

ture set, all feature sets of the form {x1, x2,…, xk, w} are 

compared and the best one chosen to form the feature set of 

size k + 1. A problem with SFS is that there is no way to 

delete a feature adjoined early in the iteration that may not 

perform as well in combination as other features. The SFS 

look-back algorithm aims to mitigate this problem by allow-

ing deletion. For it, when there are k features, x1, x2,…, xk, in 

the growing feature set, all feature sets of the form {x1, x2,…, 

xk, w, z} are compared and the best one chosen. Then all (k + 

1)-element subsets are checked to allow the possibility of 

one of the earlier chosen features to be deleted, the result 

being the k + 1 features that will form the basis for the next 

stage of the algorithm. Flexibility can be added by consider-

ing sequential forward floating selection (SFFS), where the 

number of features to be adjoined and deleted is not fixed 

[48]. For a large number of potential features, feature selec-

tion is problematic and the best method depends on the cir-

cumstances. Evaluation of methods is generally comparative 

and based on simulations, and it has been shown that SFFS 

can perform well [49, 50]; however, as we will now demon-

strate, SFFS can be severely handicapped in small-sample 

settings by poor error estimation. 

9.3. Impact of Error Estimation on Feature-Selection 

Algorithms 

 When selecting features via an algorithm like SFFS that 

employs error estimation within it, the choice of error esti-

mator significantly impacts feature selection, the degree de-

pending on the classification rule and feature-label distribu-

tion [22]. To illustrate the issue, we consider two 20-

dimensional unit-variance spherical Gaussian class condi-

tional distributions with means at a and a, where a = (a1, 

a2,…, a20), |a| = 1, and  > 0 is a separation parameter. The 

Bayes classifier is a hyperplane perpendicular to the axis 

joining the means. The best feature set of size k corresponds 

to the k largest parameters among {a1, a2,…, a20}. We con-

sider SFS and SFFS feature selection, and the LDA and 3NN 

rules, and select 4 features from samples of size 30. Table 1 

gives the average true errors of the feature sets found by 

SFS, SFFS, and exhaustive search using various error esti-

mators. The top row gives the average true error when the 

true error is used in feature selection. This is for comparison 

purposes only because in practice one cannot use the true 

error during feature selection. Note that both SFS and SFFS 

perform close to exhaustive search when the true error is 

used. Of key interest is that the choice of error estimator can 

make a greater difference than the manner of feature selec-

tion. For instance, for LDA an exhaustive search using 

leave-one-out results in average true error 0.2224, whereas 

SFFS using bolstered resubstitution yields an average true 

error of only 0.1918. SFFS using semi-bolstered resubstitu-

tion (0.2016) or bootstrap (0.2129) is also superior to ex-

haustive search using leave-one-out, although not as good as 

bolstered resubstitution. In the case of 3NN, once again 

SFFS with either bolstered resubstitution, semi-bolstered 

resubstitution, or bootstrap outperforms a full search using 

leave-one-out.  

9.4. Likelihood of Finding Good Feature Sets 

 The kinds of results we observe in Table 1, lead us to ask 

whether it is likely that feature selection can find good fea-

ture sets. Two questions arise in the context of small sam-

ples: (1) Can one expect feature selection to yield a feature 

set whose error is close to that of an optimal feature set? (2) 

If a good feature set is not found, should it be concluded that 

good feature sets do not exist? These questions translate 

Table 1. Error Rates for Feature Selection Using Various Error Estimators 

 LDA  3NN  

Exhaust  SFS  SFFS Exhaust  SFS SFFS 

true 0.1440 0.1508 0.1494 0.1525 0.1559 0.1549 

resub 0.2256 0.2387 0.2345 0.2620 0.2667 0.2670 

loo 0.2224 0.2403 0.2294 0.2301 0.2351 0.2364 

cv5 0.2289 0.2367 0.2304 0.2298 0.2314 0.2375 

b632 0.2190 0.2235 0.2129 0.2216 0.2192 0.2201 

bresub 0.1923 0.2053 0.1918 0.2140 0.2241 0.2270 

sresub 0.1955 0.2151 0.2016 0.2195 0.2228 0.2230 
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quantitatively into questions concerning conditional expecta-

tion. (1) Given the error of an optimal feature set, what is the 

conditionally expected error of the selected feature set? (2) 

Given the error of the selected feature set, what is the condi-

tionally expected error of the optimal feature set? The first 

question gets directly at the question of whether one can ex-

pect suboptimal feature-selection algorithms to find good 

feature sets. The second question relates directly in practice 

because there one has a data set, applies a feature-selection 

algorithm, and estimates the error of the resulting classifier. 

If the classifier is not good, one must confront the dilemma 

of whether, given the data set in hand, there does not exist a 

feature set from which a good classifier can be designed or 

whether there exist feature sets from which good classifiers 

can be designed but the feature-selection algorithm has failed 

to find one. The two conditional questions have been ad-

dressed in a model-based study whose results are not promis-

ing [23]. The study also considers patient data, in which case 

linear regression is used as an approximation to the condi-

tional expectation.  

 The patient data are those associated with Fig. (1), the 

complete data set consisting of the data from the 295 mi-

croarrays for the 70 genes selected by [30]. The complete 

data set serves as the (empirical) distribution. The optimal 

feature set is taken from a feature-set test bed in which opti-

mal feature sets are known [51]. Even with only 70 features, 

computation time is so extensive that the test bed only con-

siders feature sets of no more than 7 genes. The regression 

analysis is done by drawing 200 50-point samples from the 

295-point empirical distribution and applying SFFS feature 

selection to obtain a 7-gene feature set for each sample.  

We make two scatter plots, one consisting of the error pairs 

( FS, best) and other consisting of the error pairs ( best, FS), 

where FS and best are the errors for the classifiers designed 

on the selected feature set and best feature set, respectively, 

using the 50 points, and where FS and best are computed 

using the 245 points not included in the sample. We observe 

in Fig. (10) (and in other approaches to choosing potential 

patient feature sets [23]) that feature selection does not 

achieve good results. In part (a) of the figure the regression 

of FS on best is well above the 45 degree line, and the dots, 

marking the means, show that the mean value of FS is ap-

proximately 0.08 greater than the mean value of best. The 

regression of best on FS in the second part of the figure is 

even more striking, with the regression line being almost 

horizontal. Clearly, one cannot say much about the best fea-

ture set from the one selected. These poor results when se-

lecting 7 features out of 70 do not bode well for achieving 

good results when tackling the much harder problem of se-

lecting 10 or 20 genes out of 10,000 genes.  

9.5. Performance of Feature-Selection Algorithms 

 A host of feature-selection algorithms has been proposed 

in the literature. When confronted with a new feature-

selection algorithm, one naturally asks about its perform-

ance. This is the issue confronted in Section 9.4, where we 

were concerned with the regression of the error of the opti-

mal feature set on the error of the selected feature set, or vice 

versa. A raw measure of feature-selection performance is 

given by the difference, E[ FS]  E[ best], between the ex-

pected errors of the selected and best feature sets. This dif-

ference constitutes algorithm goodness. Without knowing it, 

one really cannot address the performance issue. It is impor-

tant to note that performance depends on the feature-label 

distribution, classification rule, and the parameter settings 

within the feature-selection algorithm itself. For instance, if 

one uses SFS with bolstered resubstitution within the SFS 

algorithm, as we have seen, performance is different than if 

we use leave-one-out cross-validation within the SFS algo-

rithm. 

 We are confronted by two issues when computing E[ FS] 

 E[ best]: (1) we need to know an optimal feature set; and 

(2) we need to evaluate the errors of the classifiers corre-

sponding to the selected and optimal feature sets. The second 

requirement means that we need to either know the feature-

 

 

 

 

 

 

 

 

 

 

 

(a)        (b) 

Fig. (10). Linear regression for feature selection: (a) error of selected set regressed on best set; (b) error of best set regressed on selected set. 
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label distribution or have a sufficiently large amount of data 

to assure us of accurate error estimates. The first requirement 

is more challenging. For a model-based analysis, one must 

either use a model for which an optimal feature set is known, 

the approach taken in Section 9.3, or one must perform an 

exhaustive search of all possible feature sets of a given size 

to find one with minimum error. If one is going to use em-

pirical data, then the sample must be sufficiently large for 

accurate error estimation and one must perform an exhaus-

tive search of all possible feature sets using the empirical 

data as an (empirical) probability distribution to find an op-

timal feature set. This is the approach taken in Section 9.4 

where we used a feature-selection test bed based upon good 

and bad prognosis breast-cancer data [51].  

 If one simply wants to compare the performances of two 

feature-selection algorithms, then one needs to compare the 

expected errors of the feature sets found by the two algo-

rithms. This only presents us with the second of the preced-

ing two requirements: evaluate their errors. 

 Suppose one applies the following experimental protocol: 

propose a new feature-selection algorithm, use it to find fea-

ture sets and the corresponding classifiers on some small 

data sets, use a training-data error estimator to estimate the 

errors of the classifiers, and then compare these errors to 

errors arising from another feature-selection algorithm ap-

plied in the same manner. What then can be validly con-

cluded? First, since E[ FS]  E[ best] is not estimated (an op-

timal feature-set not even being known), there is no quantita-

tive measure of performance relative to an optimal feature 

set. Second, the comparison is itself not valid unless the dif-

ferences in performance are sufficiently large to overcome 

the variance in the error estimation, perhaps with a hypothe-

sis test, or an analysis of variance if a collection of feature-

selection algorithms is to be compared. Even if the latter is 

accomplished, it is only valid for the empirical data on which 

the comparison is based. Hence, one must be very cautious 

when applying the obtained conclusion to any future data. 

10. CLUSTERING 

 Clustering has become a popular data-analysis technique 

in genomic studies using gene-expression microarrays [52]. 

Time-series clustering groups together genes whose expres-

sion levels exhibit similar behavior through time. Similarity 

indicates possible co-regulation. Another way to use expres-

sion data is to take expression profiles over various tissue 

samples, and then cluster these samples based on the expres-

sion levels for each sample. This approach is used to indicate 

the potential to discriminate pathologies based on their dif-

ferential patterns of gene expression. Admittedly, clustering 

has an intuitive appeal. However, the history of clustering 

and its historical ad hoc formulation absent a formal prob-

abilistic setting should make a scientist extremely wary. The 

lack of such a formal theory opens up the potential for sub-

jectivity, which is an anathema to science. Jain, Murty, and 

Flynn make this clear when writing on the classical interpre-

tation, “Clustering is a subjective process; the same set of 

data items often needs to be partitioned differently for differ-

ent applications” [53]. If so, then it cannot be a medium for 

scientific knowledge. 

 As discussed previously, classification achieves its scien-

tific status in terms of a model in which quantitative state-

ments can be made concerning classifier error. In particular, 

classifier error, the measure of its predictive capability, can 

be estimated under the assumption that the sample data come 

from a feature-label distribution. Until recently, clustering 

had not been placed into a probabilistic framework in which 

predictive accuracy is rigorously formulated. Many so-called 

“validation indices” have been proposed for evaluating clus-

tering results; however, these tend to be significantly differ-

ent than for classification validation, where the error of a 

classifier is given by the probability of an erroneous deci-

sion. In fact, the whole notion of “validation” as has been 

often used in clustering does not necessarily refer to scien-

tific validation, as does error estimation in classification.  

 The scientific content of a cluster operator lies in its abil-

ity to predict results, and this ability is not determined by a 

single empirical event. The key to a general probabilistic 

theory of clustering is to recognize that classification theory 

is based on operators on random variables, and that the the-

ory of clustering needs to be based on operators on random 

point sets. The predictive capability of a clustering algorithm 

must be measured by the decisions it yields regarding the 

partitioning of random point sets, as its decisions are com-

pared to the underlying process from which the clusters are 

generated. 

 Using a model-based approach and a probabilistic theory 

of clustering as operators on random sets, we assume the 

points to be clustered belong to a realization of a labeled 

point process, and define a cluster algorithm, also called a 

label operator, as a mapping that assigns to every set a label 

function [54]. K-means, hierarchical, fuzzy C-means, self-

organizing maps, and other algorithms, together with their 

different parameters, are different label operators. In this 

context, the error of a clustering algorithm is given in terms 

of the expected error of the label operator, the latter being 

the expected number of points labeled differently by it and 

the random process.  

 To rigorously quantify the notion of clustering error, 

suppose IA(x) denotes the index of the cluster to which a vec-

tor x belongs for the partition C
A
. Then the measure of dis-

agreement (or error) between two partitions C
A
 and C

B
 is de-

fined as the proportion of objects that belong to different 

clusters, namely, 

  (C 
A
, C 

B
) = 

n

II BA |)}()(:{| xxx
       (16) 

where |•| indicates the number of elements of a set and n is 

the total number of points. Since the disagreement between 

two partitions should not depend on the indices used to label 

their clusters, the error rate is defined by  

 
*
(C 

A
, C 

B
) = min (C 

A
, (C 

B
))        (17) 
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over all of the possible permutations  of the sets in C
B
. If C

A
 

is the partition of a set generated by the random process un-

der consideration and C 
B
 is the result of cluster operator , 

then 
*
(C 

A
, C 

B
) is the empirical error of  for that set. The 

error, G[ ], of  is the expected error, E[
*
(C 

A
, C 

B
)], over 

point sets generated by the random process G [54].  

 The characterization of classifier model validity goes 

over essentially unchanged to cluster-operator model valid-

ity. A cluster-operator model is a pair M = ( , ) composed 

of a function  that operates on finite point sets in 
d
 and a 

real number   [0, 1]. For any finite point set P  
d
, (P) 

is a partition of P. The mathematical form of the model is 

abstract, with  not specifying an actual error probability 

corresponding to . M becomes a scientific model when it is 

applied to a random labeled point set. The model is valid for 

the random point set to the extent that  approximates G[ ]. 

As with classification, one can also consider the validity of 

the model M = ( , ) under the assumption that  and  

have been arrived at via the rule model L = ( , ), where  

is a procedure to design the cluster operator  and  is an 

error estimation procedure. Historically, cluster operators 

have not been learned from data, but they can be [54]. Here 

we consider error estimation. In complete analogy to classi-

fication, cluster operator  is better than cluster operator  

relative to the point process G if G[ ] < G[ ].  

 To estimate the error of a cluster operator, , we can pro-

ceed in the following manner: a sample of point sets is gen-

erated from the random set, the algorithm is applied to each 

point set and the clusters are evaluated relative to the known 

partition according to the distribution of the random point 

set, and the errors are averaged over the point sets compos-

ing the sample [55]. This is analogous to estimating the error 

of a classifier on a sample of points generated from the fea-

ture-label distribution. The resulting cluster operator model, 

M = ( , ˆ ), possesses excellent validity if the sample size is 

large, meaning that a large number of point sets are gener-

ated from the random set.  

 The foregoing distributional approach can assess the 

worth of a clustering algorithm in various model contexts; 

however, it cannot be used if one has a single collection of 

point data to cluster. Just as procedures for estimating classi-

fier error from experimental data have been developed, re-

search remains to be done on estimating clustering error. The 

latter presents a much more difficult problem because, 

whereas in the context of classification a single data set rep-

resents many realizations of the feature-label vector, for clus-

tering one labeled data set only represents a single realiza-

tion, and the data are often unlabeled.  

11. VALIDATION INDICES 

 As historically considered, a clustering validity index 

evaluates clustering results based on a single realization of 

the random point set. Assessing the validity of a cluster op-

erator on a single point set is analogous to assessing the va-

lidity of a classifier with a single point. Going further, as-

sessing its validity on a single point set without knowledge 

of the true partition is analogous to assessing the validity of a 

classifier with a single unlabeled point. But there is a differ-

ence: the output of a cluster operator is a partition of a point 

set and therefore one can define measures for different as-

pects of the spatial structure of the output, for instance, com-

pactness. One can also consider the effects of the cluster 

operator on subsets of the data. It could then be hoped that 

such measures can be used to assess the validity of the algo-

rithm. Aside from any heuristic reasoning that might be in-

volved in designing a validity index, the single critical point 

is clear: if a validity index is to assess validity, then it should 

be closely related to the error rate of the cluster operator. 

Thus, it is natural to investigate validity measures relative to 

how well they correlate with error rates across clustering 

algorithms and random-point-set models [56]. Here we de-

scribe the methodology of the investigation and give some 

illustrative results for point processes, clustering algorithms, 

and validation indices, there being a much larger collection 

of results reported in [56]. 

 We report results for three models: (1) a 10-dimensional 

mixture of two spherical Gaussians; (2) a 2-dimensional 

mixture of a spherical Gaussian and a circular distribution; 

and (3) a 2-dimensional mixture of four spherical Gaussian 

distributions. Fig. (11) shows realizations of these models, 

where the graph for the first model is a 3D PCA plot. We 

consider four clustering algorithms: k-means (km), fuzzy c-

means (fcm), hierarchical with Euclidean distance and com-

plete linkage (hi[eu, co]), and hierarchical with Euclidean 

 

 

 

 

 

 

 (a) (b) (c) 

Fig. (11). Realizations of point processes: (a) Model 1, the 3D PCA plot for two 10-dimensional spherical Gaussians; (b) Model 2, a 2-

dimensional spherical Gaussian and a circular distribution; (c) Model 3, four 2-dimensional spherical Gaussians. 
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distance and single linkage (hi[eu, si]). Since these are well-

known, we leave their description to the literature. We con-

sider several validation indices representing the three com-

mon categories of validation indices: external, internal, and 

relative. 

 External validation methods are based on how pairs of 

points are commonly and uncommonly clustered by a cluster 

operator and a given partitioning, which is usually based on 

prior domain knowledge or some heuristic, but could in prin-

ciple be based on distributional knowledge. Suppose that PG 

and PA are the given and algorithm-generated partitions, re-

spectively, for the sample data S. Define four quantities: a is 

the number of pairs of points in S such that the pair belongs 

to the same class in PG and the same class in PA; b is the 

number of pairs such that the pair belongs to the same class 

in PG and different classes in PA; c is the number of pairs 

such that the pair belongs to different classes in PG and the 

same class in PA; and d is the number of pairs S such that the 

pair belongs to different classes in PG and different classes in 

PA. If the partitions match exactly, then all pairs are either in 

the a or d classes. The Jaccard coefficient is defined by 

 J = 
cba

a

++
          (18) 

 The practical problem with the external approach is that 

if one knows the correct partition, then the true error can be 

computed, and if some heuristic is used, then the measure is 

relative to the quality of the heuristic.  

 Internal validation methods evaluate the clusters based 

solely on the data, without external information. Typically, a 

heuristic measure is defined to indicate the goodness of the 

clustering. A common heuristic for spatial clustering is that, 

if the algorithm produces tight clusters and cleanly separated 

clusters, then it has done a good job clustering. The Dunn 

index is based on this heuristic. Let C = {C1, C2,..., Ck}be a 

partition of the n points into k clusters, (Ci, Cj) be a be-

tween-cluster distance, and (Ci) be a measure of cluster 

dispersion. The Dunn index is defined by 

 (C) = 
)(max

),(
minmin

l
l

ji

iji C

CC         (19) 

[57]. High values are favorable. As defined, the index leaves 

open the distance and dispersion measures, and different 

ones have been employed. Here we utilize the centroids of 

the clusters: summation 

(Ci, Cj) = 
1

|Ci | + |Cj |
|| x y ||

x Ci

+ || y x ||

y Cj

      (20) 

where x  and y  are the centroids of Ci and Cj, respectively; 

and 

 (Ci) = 
2

|Ci |
|| x x ||

x Ci

         (21) 

 Relative validation methods are based on the measure-

ment of the consistency of the algorithms, comparing the 

clusters obtained by the same algorithm under different con-

ditions. Here we consider the stability index, which assesses 

the validity of the partitioning found by clustering algorithms 

[58, 59]. The stability index measures the ability of a clus-

tered data set to predict the clustering of another data set 

sampled from the same source. Let us assume that there ex-

ists a partition of a set S of n objects into K groups, C = 

{C1,..., CK}, and a partition of another set S0 of n0 objects 

into K0 groups, C0 = {C01,... , 
00KC }. Let the labels  and 0 

be defined by (x) = i if x  Ci, for x  S, and 0(x) = i if x 

 C0i, for x  S0, respectively. The labeled set (S, ) can be 

used to train a classifier f:
n
  L that induces a labeling 

*
 

on S0 by 
*
(x) = f

 
(x). The consistency of the pairs (S, ) and 

(S0, 0) is measured by the similarity between the original 

labeling 0 and the induced labeling 
*
 in S0:  

 ))(,(min),( *

0= ddS 0
CC         (22) 

over all possible permutations  of the K0 labels for C0, 

where 

 d ( 1, 2 ) =
1

n0 x S0

( 1(x), 2 (x))         (23) 

with (u, v) = 0 if u = v and (u , v) = 1 if u  v. The stability 

for a clustering algorithm is defined by the expectation of the 

stability for pairs of sets drawn from the same source: 

 )],([ 0),)(,( 00
CC

CC SSS dE=         (24) 

 In practice, there is only one set S of points with which to 

estimate the stability of a clustering algorithm. Estimation of 

the stability is obtained via a re-sampling scheme [58]: the 

set S is partitioned in two disjoint subsets, S
1
 and S

2
, the clus-

tering algorithm is applied to obtain two partitions, C 
1
 and 

C 
2
, dS(C 

1
,C 

2
) is computed, and the process is repeated and 

the values averaged to obtain an estimate of . 

 We evaluate the goodness of a validity index by comput-

ing Kendall’s rank correlation between the error of the clus-

tering algorithm and the validity index. This correlation is 

estimated using 100 generated data sets in each case and 

averaging. The external Jaccard coefficient is computed us-

ing the true partition. The results are given in Table 2. Over-

all, both in the few examples presented here and the full 

analysis [56], the results raise serious questions concerning 

the scientific validity of validity indices. Even in model 1, 

with two Gaussians, the internal Dunn index does not per-

form well. The stability index performs poorly in all cases 

except for two clustering algorithms with model 3, but even 

here performs very poorly for k-means and single-linkage 

hierarchical clustering. The Jaccard coefficient, using the (in 

practice, unknown) true partitions, has problems with hierar-

chical clustering. This study reveals that there are serious 

validity issues when using standard clustering algorithms: if 

the validity indices cannot be trusted, and these constitute the 

standard way of assessing validity, then what scientific 
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meaning can be attributed to the results of clustering algo-

rithms? 

12. CONCLUDING REMARKS 

 We re-iterate what we said in the Introduction: much 

more attention needs to be paid to the validation of methods 

using in genomics. Sound science requires conclusions to be 

drawn only when conclusions are warranted. Whether or not 

a conclusion is warranted can only be answered within the 

framework of a sound epistemology – and this means rigor-

ous validation. There is no nonmathematical way to pre-

cisely describe knowledge regarding model validity. It de-

pends on the choice of validity measurement and the mathe-

matical properties of that measurement as applied in differ-

ent circumstances. In all cases, the nature of our knowledge 

rests with the mathematical theory we have concerning the 

measurements. That cannot be simplified. If either the avail-

able theory or one’s familiarity with the theory is limited, 

then one’s appreciation of the scientific content of a model is 

limited.  
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