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Abstract: There is an epistemological crisis in genomics. At issue is what constitutes scientific knowledge in genomic 

science, or systems biology in general. Does this crisis require a new perspective on knowledge heretofore absent from 

science or is it merely a matter of interpreting new scientific developments in an existing epistemological framework? 

This paper discusses the manner in which the experimental method, as developed and understood over recent centuries, 

leads naturally to a scientific epistemology grounded in an experimental-mathematical duality. It places genomics into this 

epistemological framework and examines the current situation in genomics. Meaning and the constitution of scientific 

knowledge are key concerns for genomics, and the nature of the epistemological crisis in genomics depends on how these 

are understood. 
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INTRODUCTION 

 There is an epistemological crisis in genomics. The rules 
of the scientific game are not being followed. Given the his-
torical empirical emphasis of biology and the large number 
of ingenious experiments that have moved the field, one 
might suspect that the major epistemological problems would 
lie with mathematics, but this is not the case. While there 
certainly needs to be more care paid to mathematical model-
ing, the major problem lies on the experimental side of the 
mathematical-experimental scientific duality. High-through- 
put technologies such as gene-expression microarrays have 
lead to the accumulation of massive amounts of data, orders 
of magnitude in excess to what has heretofore been conceiv-
able. But the accumulation of data does not constitute sci-
ence, nor does the a postiori rational analysis of data. 

 The ancients were well aware of the role of observation 
in natural science. Reason applied to observations, not rea-
son alone, yielded pragmatic knowledge of Nature. This is 
emphasized by the second century Greek physician Galen in 
his treatise, On the Natural Faculties, when, in regard to the 
effects of a certain drug, he refutes the rationalism of Ascle-
piades when he writes, “This is so obvious that even those 
who make experience alone their starting point are aware of 
it… In this, then, they show good sense; whereas Asclepia-
des goes far astray in bidding us distrust our senses where 
obvious facts plainly overturn his hypotheses” [1]. For the 
ancients, the philosophy of Nature might have dealt with 
principles of unity, ideal forms, and final causes, but natural 
science was observation followed by rational analysis. This 
was especially so during the Roman period, as evidenced by 
their remarkable engineering achievements. 

 The change brought about by the “new science” of the 
Sixteenth and Seventeenth Centuries is based on the integra- 
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tion of two principles: (1) design of experiments under con-

strained circumstances to extract specifically desired infor-

mation; and (2) mathematical formulation of knowledge. The 

two principles arise from the two sides of the scientific prob-

lem, the source of knowledge and the representation of 

knowledge in the knower. Perhaps the greater revolution in 

knowledge is the design of experiments. One need only think 

of Archimedes’ mathematical analyses of fluidics and me-

chanics to see that the ancients recognized the central role of 

mathematics, even if they did not understand that role in the 

modern sense. But the modern concept of experiment is a 

different matter altogether. The Greeks understood the role 

of observation, but not the idea of a controlled scientific ex-

periment. Nor was this idea familiar to Ptolemy. It was Gali-

leo who realized that Nature should not be observed au natu-

ral, but instead should be artificially constrained to focus on 

the phenomena of interest without the effects of confounding 

variables. For modern science, reason does not enter the pic-

ture following observations; rather, it first provides a proto-

col for the observations so their analysis will characterize 

relations of interest and not be confounded by a multitude of 

secondary variables. For modern science, reason steps out-

side of Nature and constrains the manner in which Nature 

presents herself for analysis. While such constraint causes 

inexactitude relative to the knowledge of all variables and 

their interactions, Nature’s complexity precludes such full 

knowledge anyway. For modern science, reason brings focus 

to the scientific enterprise.  

 Everything begins with the notion of a designed experi-

ment – that is, methodological as opposed to unplanned ob-

servation. Rather than being a passive observer of Nature, 

the scientist structures the manner in which Nature is to be 

observed. The monumental importance of this change is re-

flected by the inclusion of the following statement concern-

ing the early modern scientists, in particular, Galileo and 

Torricelli, by Immanuel Kant in the preface of the second 

edition of the Critique of Pure Reason: 
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 They learned that reason only perceives that which it 
produces after its own design; that it must not be content 
to follow, as it were, in the leading-strings of Nature, but 
must proceed in advance with principles of judgment ac-
cording to unvarying laws and compel Nature to reply to 
its questions. For accidental observations, made accord-
ing to no preconceived plan, cannot be united under a 
necessary law… Reason must approach Nature… [as] a 
judge who compels witnesses to reply to those questions 
which he himself thinks fit to propose. To this single idea 
must the revolution be ascribed, by which, after groping 
in the dark for so many centuries, natural science was at 
length conducted into the path of certain progress [2]. 

A good deal of the crisis in genomics turns on a return to 
“groping in the dark.” 

 In previous papers, we have considered how the model-

experiment duality leads to a contemporary epistemology for 

computational biology [3], treated the validation of computa-

tional methods in genomics [4], and characterized inference 

validity for gene regulatory networks in the framework of 

distances between networks [5]. Here we focus on how the 

experimental method leads to a general scientific epistemol-

ogy and how contemporary genomic research often fails to 

satisfy the basic requirements of that epistemology, thereby 

failing to produce valid scientific knowledge.  

SCIENTIFIC KNOWLEDGE 

 Experiments drive the epistemology of science. The 

product of an experiment is a set of measurements. These 

form the data of sensibility, the empirical (as opposed to a 

rational) basis for knowledge. In themselves, measurements 

do not constitute scientific knowledge. They must be inte-

grated into a conceptual system. Scientific knowledge is 

constituted via synthesis of the observed measurements. 

These are related to variables and relations among the vari-

ables. A complex of variables and their relations compose a 

mathematical model. A scientific theory consists of two 

parts: (1) a mathematical model composed of symbols (vari-

ables and relations between the variables), and (2) a set of 

operational definitions that relate the symbols to data.  

 The model must be mathematical because it relates 
measurements via numerical concepts, such as length, 
weight, rate of decay, intensity, etc., or judgments via logical 
constructs. A basic model may be formed by some set of 
relations, say a stochastic model of a gene regulatory net-
work, but knowledge does not stop there. Stopping there 
may make the system useless. Given some defining relations 
for a regulatory network, mathematical deduction leads to 
the full flowering of the knowledge inherent in the relations 
– for instance, deriving the steady-state distribution of the 
network. Indeed, if one wishes to use the network to obtain 
therapeutic strategies, then a natural way to proceed is to 
derive intervention policies that favorably alter the steady 
state of the system by reducing the long-run probability of 
the system being in an undesirable state. In Kantian termi-
nology, the mathematical model constitutes the object of our 
knowledge. The experiment and the mathematical model 
form two inseparable requirements for scientific knowledge. 
Either without the other cannot yield scientific knowledge. 

Kant famously stated, “A concept without a percept is 
empty; a percept without a concept is blind” [2]. 

 A mathematical model alone does not constitute a scien-
tific theory. The model must be predictive. Mathematics is 
intrinsic because science is grounded in measurements; how-
ever, a model’s formal structure must lead to experimental 
predictions in the sense that there are relations between 
model variables and observable phenomena such that ex-
perimental observations are in accord with the predicted val-
ues of corresponding variables. These predictive relations 
characterize model validity and are necessary for the exis-
tence of scientific knowledge. In The Rise of Scientific Phi-
losophy, Hans Reichenbach argues that reason supplies the 
predictive element in science: 

 If the abstract relations are general truths, they hold not 
only for the observations made, but also for observations 
not yet made; they include not only an account of past 
experiences, but also predictions of future experiences. 
That is the addition which reason makes to knowledge. 
Observation informs us about the past and the present, 
reason foretells the future [6]. 

 This statement leads to the necessity of a predictive 
framework for validation. System validation requires that the 
symbols be tied to observations by some semantic rules that 
relate not necessarily to the general principles of the mathe-
matical model themselves but to conclusions drawn from the 
principles. The conceptual system must be related to the ex-
perimental methodology. Phillipp Frank summarizes the 
situation both historically and epistemologically: 

 Reichenbach had explicitly pointed out that what is 
needed is a bridge between the symbolic system of axi-
oms and the protocols of the laboratory. But the nature of 
this bridge had been only vaguely described. Bridgman 
[7] was the first who said precisely that these relations of 
coordination consist in the description of physical opera-
tions. He called them, therefore, operational definitions 
[8]. 

This means that the model be such that it can be tied to 
physical operations. Moreover, it leaves open the manner 
and the extent to which the model must be related to experi-
mental outcomes. The general epistemological perspective 
seems clear, but its application to particular settings is not 
specified. 

 Where is the model to come from and how does one 
characterize model validity relative to a measurement proc-
ess? Albert Einstein states, 

 In order that thinking might not degenerate into ‘meta-
physics,’ or into empty talk, it is only necessary that 
enough propositions of the conceptual system be firmly 
enough connected with sensory experiences and that the 
conceptual system, in view of its task of ordering and 
surveying sense experience, should show as much unity 
and parsimony as possible. Beyond that, however, the 
system is (as regards logic) a free play with symbols ac-
cording to (logically) arbitrarily given rules of the game 
[9]. 

According to Einstein, the model (conceptual system) is a 
creation of the “imagination.” The manner of this creation is 
not part of the scientific theory. The classical manner is that 
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the scientist combines an appreciation of the problem with 
reflections upon relevant phenomena and, based upon 
mathematical knowledge, creates a model. As Einstein 
states, this creation is free except that it must conform to the 
rules of the mathematical game. At issue is what is meant by 
“enough propositions” being “firmly enough connected with 
sensory experiences.” Operational definitions are required, 
but their exact formulation in a given circumstance is left 
open. Their specification constitutes an epistemological issue 
that must be addressed in mathematical (including logical) 
statements. Absent such a specification, a purported scien-
tific theory is meaningless. Reichenbach states, “The refer-
ence to verifiability is a necessary constituent of the theory 
of meaning. A sentence the truth of which cannot be deter-
mined from possible observations is meaningless” [6]. Be-
cause a model consists of mathematical relations and system 
variables must be checked against quantitative experimental 
observations, there is no nonmathematical way to describe 
the requirements and protocols to assess model validity. 

 Suppose a geneticist recognizes phenotypic effects from 
blocking the promoter region of a gene to prevent transcrip-
tion or from using RNAi to suppress signaling. The geneti-
cist might then propose a mathematical model of the form  

 (g  0)  (p1  p2),   

where g  0 means that the protein product of gene g never 
reaches its target, p1  p2 means phenotype p1 is trans-
formed to phenotype p2, and  is probabilistically inter-
preted as prediction. The model is validated by an experi-
ment designed to reflect conditions under which the model is 
hypothesized. If the geneticist were to make observations 
without specifying a precise mathematical model (including 
a probability distribution to characterize the probabilistic 
aspects of the model) and a protocol for predictive valida-
tion, then there would be no scientific knowledge.  

 The fundamental requirement of a scientific validation 
procedure is that it must be predictive. A scientific theory is 
not complete without the specification of achievable meas-
urements that can be compared to predictions derived from 
the conceptual theory. Moreover, it depends on the choice of 
validity criteria and the mathematical properties of those 
criteria as applied in different circumstances. The sensory 
measurements and the manner in which they are to be com-
pared to the conceptual system must be formally specified. 
The validity of a theory is relative to this specification, but 
what is not at issue is the necessity of a set of relations tying 
the conceptual system to operational measurements. It makes 
no sense to argue about the validity of a scientific theory 
without specifying the validation protocol. A scientific the-
ory is inter-subjective, but the epistemological criteria under-
lying a particular validation are open to debate. Once the 
validation requirements are specified, the mathematical 
model (conceptual system) is valid relative to the validation 
criteria and to the degree that the requirements are satisfied, 
that is, to the degree that predictions demanded by the vali-
dation protocol and resulting from the mathematical model 
agree with experimental observations. 

LIMITS TO UNDERSTANDING 

 The dependence of science on experiment and prediction 
necessitates that scientific knowledge be constituted within 

mathematical systems, not ordinary language, because the 
latter is not conducive to rigorous probabilistic statements 
quantifying predictability. Common sense notions that play 
no role in a predictive model are not part of science, however 
useful they might be in everyday life. For instance, consider 
causality, which has deep roots in epistemology. In his Phys-
ics, Aristotle states, “Knowledge is the object of our inquiry, 
and men do not think they know a thing till they have 
grasped the ‘why’ of it (which is to grasp its primary cause). 
So clearly we too must do this as regards both coming to be 
and passing away and every kind of physical change” [10]. 
Aristotle is making the epistemological claim that to have 
knowledge of a physical change we must know its cause. 
Although “cause” is an everyday term that seems to be 
meaningful, the history of philosophy is strewn with at-
tempts to define different types of causes and to make clear 
the notion of causality. But does such a common sense term 
with a long history in the discussion of natural phenomena 
have any scientific content? 

 Relative to modern science, perhaps the most important 
analysis of causality is due to David Hume. He notes that a 
cause and its effect are contiguous and related via temporal 
priority, with the cause prior to the effect, but more than con-
tiguity and temporal priority, causality relates to a “neces-
sary connection” between the cause and the effect and we 
come to this conclusion “when one particular species of 
events has always, in all instances, been conjoined with an-
other” [11]. But what is the ground of this belief in causal-
ity? Hume points out that the principle of causality is neither 
intuitively certain nor provable by logical means, and that 
our belief in the principle rests not on reason, but on habit 
and custom. In A Treatise of Human Nature, he writes,  

 [The] supposition that the future resembles the past is not 
founded on arguments of any kind, but is derived entirely 
from habit, by which we are determined to expect for the 
future the same train of objects to which we have been 
accustomed…. All our reasonings concerning causes and 
effects are derived from nothing but custom and belief is 
more properly an act of the sensitive than of the cogita-
tive part of our nature [12]. 

If causality rests on habit and custom, then to the extent that 
scientific knowledge requires causality, the ground of scien-
tific knowledge is brought into question. Based on Hume’s 
analysis, there is no logical reason to accept the principle of 
causality, so that one may choose to accept or reject it. For 
Hume, the concept of a necessary connection between phe-
nomena is subjective. If logical necessity is considered to be 
a requirement for knowledge, then science does not produce 
knowledge.  

 Kant agrees with Hume that the principle of causality is 
not a scientific principle; however, whereas for Hume, habit 
underlies belief in causality, for Kant, causality is a form 
imposed on the data by the nature of the human mind. The 
mind imposes forms on the data of sensation, and scientific 
knowledge is limited by these forms. The way things appear, 
such as being spatially coordinated and connected by causal-
ity, are due to subjective a priori conditions for human 
knowledge. One cannot know things apart from the manner 
in which they conform to these a priori mental forms. While 
Kant differs from Hume on the ground of causality, for sci-
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ence, the basic point remains. Kant writes, “[Hume] justly 
maintains that we cannot comprehend by reason the possibil-
ity of causality, that is, of the reference of the existence of 
one thing to the existence of another, which is necessitated 
by the former” [13]. 

 Hume pushes his analysis beyond causality itself, to the 
very relationship between observation and scientific theory 
when he states, “From the mere repetition of any past im-
pression, even to infinity, there never will arise any new 
original idea, such as that of a necessary connection; and the 
number of impressions has in this case no more effect than if 
we confined ourselves to one only” [12]. If science rests on 
necessary connections – for instance, the certainty that event 
B will follow event A – then the ground of science is de-
stroyed because certain knowledge about Nature is impossi-
ble, no matter how many times we observe a relation. The 
concept of induction as logic is demolished. There is no ar-
gument based on reason that allows one to assert a certain 
relation based on experience. Hume’s analysis shows that 
inductive inference is not logically necessary. Habit may 
lead one to conclude that a relation will hold the next time 
the antecedent is observed, but there is no logical certainty.  

 Hume’s reasoning does not imply the end of science, but 
only that science needs an epistemology suitable to an em-
pirical perspective. Its content and validity can not be based 
on a system suitable to abstract logic or mathematics, where 
propositions can be asserted to be either true or false. Sci-
ence must differentiate itself from a metaphysical concept of 
knowledge that looks for connections beyond the observable. 
Reichenbach puts the matter in the following way: 

 Speculative philosophy is characterized by a transcen-
dental conception of knowledge, according to which 
knowledge transcends the observable things and depends 
upon the use of other sources than sense perception. Sci-
entific philosophy has constructed a functional concep-
tion of knowledge, which regards knowledge as an in-
strument of prediction and for which sense observation is 
the only admissible criterion of nonempty truth [6]. 

Scientific truth is pragmatic truth and this truth is contained 
in the predictive capacity of a scientific theory. Scientific 
knowledge is about the future. This pragmatism towards the 
future is bluntly affirmed by Feynman when he writes, 
“Knowledge is of no real value if all you can tell me is what 
happened yesterday” [14]. Past observations may lead one to 
construct a theory, say through statistical estimation, but the 
theory must predict the future. As stated by Riechenbach, “A 
mere report of relations observed in the past cannot be called 
knowledge. If knowledge is to reveal objective relations of 
physical objects, it must include reliable predictions. A radi-
cal empiricism, therefore, denies the possibility of knowl-
edge” [6]. 

 Prediction is not certitude. Instead of causality, science 
involves conditional distributions that describe the probabil-
ity of a target random variable Y given the values of a set of 
predictor random variables, X1, X2,…, Xm. In particular, 
given the predictor random variables, the best prediction 
(relative to mean-square error) for the value of Y is its condi-
tional expectation. Causality is replaced by conditioning. 
Statements concerning conditional prediction can be vali-
dated via experimentation. The meaning of a statement can 

be rigorously defined within the framework of probability 
theory and its relation to measurable phenomena can be 
mathematically characterized within the theory of statistics. 
If the predictor variables are temporally antecedent to the 
variable to be predicted, then we have forward prediction. 
The terms “cause” and “effect” never appear because they 
lack empirical foundation. Erwin Schroedinger explains, “It 
can never be decided experimentally whether causality in 
Nature is 'true' or 'untrue.' The relation of cause and effect, as 
Hume pointed out long ago, is not something that we find in 
Nature but is rather a characteristic of the way in which we 
regard Nature” [15]. One may make a philosophic choice to 
view Nature causally, but this viewpoint lies outside of sci-
ence. 

 As an illustration, it has been shown that experimentally 
increasing the levels of the Wnt5a protein secreted by a 
melanoma cell line via genetic engineering methods directly 
alters the metastatic competence of that cell as measured by 
the standard in vitro assays for metastasis [16]. A scientific 
statement may take the form of predicting the likelihood of 
metastasis conditioned on the state of the WNT5A gene or the 
level of the Wnt5a protein. Notice the quantification: there 
must be a probability of metastasis under some specified set 
of conditions, and the validity of the statement rests with the 
accuracy of that probability. It is alright for that probability 
to be different under different conditions, for instance, de-
pending on the age or sex of the patient, but under each dif-
ferent condition, the validity is determined by the accuracy 
of the probability statement under that condition. 

 Because Hume was still thinking in the rationalist tradi-
tion while attacking a rationalist conception of science, he 
could claim that “the number of impressions has in this case 
no more effect than if we confined ourselves to one only.” If 
certainty must be obtained for valid knowledge, then his ar-
gument is sound; however, his reasoning does not apply to a 
probabilistic formulation of scientific knowledge because 
knowledge is constituted in the probability distribution of the 
random variables. For statistical inference, the accuracy of 
the distribution inferred from the data improves with the 
number of observations (under suitable assumptions on the 
sampling procedure). Hence, scientific knowledge is contin-
gent because new data may change the model, which in this 
case is the inferred distribution. The contingency of scien-
tific knowledge has long been recognized and predates 
Hume’s assault on induction. In the Mathematical Principles 
of Natural Philosophy, Isaac Newton writes, “In experimen-
tal philosophy we are to look upon propositions inferred by 
general induction from phenomena as accurately or very 
nearly true, notwithstanding any contrary hypothesis that 
may be imagined, till such time as other phenomena occur, 
by which they may either be made more accurate, or liable to 
exceptions” [17]. As the founder of mathematical physics, 
Newton appreciated the role of mathematics in science, but 
he also recognized contingency – that is, no necessary con-
nection between past observations and the future. It is not 
that he rejected causality. Indeed, he writes, “We are to ad-
mit no more causes of natural things than such as both true 
and sufficient to explain their appearances…. Therefore in 
the same natural effects we must, as far as possible, assign 
the same causes” [17]. Rather, it his recognition that induc-
tion cannot with certainty reveal relations. 
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 Even if we were to accept causality in the form of neces-
sary connections, only if all causal factors were known could 
we predict effects with certainty. In complex situations, such 
as the regulatory system of a cell, one cannot conceive of 
taking account of all contributing factors. Model complexity 
is limited due to several factors, including mathematical trac-
tability, data requirements for inference, computation, and 
feasible experimental design. Thus, there will be latent vari-
ables external to the model affecting the variables in the 
model and making the model behave stochastically. For in-
stance, consider a situation where a set M of “master” genes 
deterministically controls a set S of “slave” genes. If only a 
proper subset N  M is in the model, then each configuration 
of the latent genes in M  N produces a context for the 
model. Model behavior changes with context changes be-
cause the slaves’ values depend on all genes in M, so that the 
manner in which the genes in N control the slaves relative to 
the model network depends on the latent genes in M  N 
[18]. For a fixed setting of the latent genes the masters in M 
exhibit deterministic control, but since the contexts change 
with the latent genes and these genes are not part of the net-
work, the control internal to the model network is stochastic 
rather than deterministic. Whereas our previous discussion of 
contingency relates to the changing form of the model as 
new data are acquired, contextual changes introduce a sec-
ond form of contingency, one in which at any given time the 
model is contingent upon the latent variables. If one is not 
careful – for instance, not observing a system sufficiently 
long or under sufficiently varied conditions – one might miss 
the latent effects and obtain a model that only works in re-
stricted settings. This is fine, so long as those conditions are 
known, but they might well not be known on account of lack 
of information regarding the latent variables. A basic goal of 
experimental design is to minimize latent effects on the ob-
servations. 

 The truth of a scientific theory rests with its validation 
and a theory is validated independently of the thinking lead-
ing to it. No amount of rationalist explanation can validate a 
theory. Science is not about rationalist explanation, neither in 
its classic philosophic form of explaining events in terms of 
natural categories or its more recent computational form in 
terms of explaining the data by fitting a model. It is not un-
usual to hear it said that some theory “explains” some phe-
nomena. One listens to the explanation and it all seems quite 
reasonable. The explanation fits the data. Consider the fol-
lowing statement of Steven Jay Gould: “Science tries to 
document the factual character of the natural world, and to 
develop theories that coordinate and explain these facts” 
[19]. Perhaps this statement would have been accurate dur-
ing medieval times, but not today. While it is true that theo-
ries coordinate measurements (facts), it is not the docu-
mented measurements that are crucial, but rather the yet to 
be obtained measurements. Gould’s statement is prima fas-
cia off the mark because it does not mention prediction.  

 Science is not about data fitting. Consider designing a 
linear classifier. A classifier (binary decision function) is 
constructed according to some design procedure that takes 
into account its mathematical structure, the data, and its suc-
cess at categorizing the data relative to some criterion. The 
result might be good relative to the assembled data; indeed, 
the constructed line might even classify the data perfectly. 

But this linear-classifier model does not constitute a scien-
tific theory unless there is an error rate associated with the 
line, predicting the error rate on future observations. Of criti-
cal importance to the scientific epistemology is that the 
model, consisting of both classifier and error rate, is valid 
only to the extent that the reported error rate is accurate. A 
model is validated neither by the rational thinking behind the 
design procedure nor its excellent data-fitting performance. 
Only knowledge of its predictive power provides validity. In 
practice, the error rate of a classifier is estimated via some 
error-estimation procedure, so that the validity of the model 
depends upon this procedure. Specifically, the degree to 
which one knows the classifier error, which quantifies the 
predictive capacity of the classifier, depends upon the mathe- 
matical properties of the estimation procedure. Absent an 
understanding of those properties, the results are meaning-
less. 

 Confusion of the scientific method with explanation is 
perhaps the greatest impediment to appreciating the nature of 
science – for instance, in a statement like, “Science explains 
natural phenomena.” Under the word “explain” in Webster’s 
Unabridged Dictionary, one finds three modern usages: (1) 
to make plain, clear, or intelligible; to clear of obscurity, (2) 
to give the meaning or interpretation of; to expound, (3) to 
account for; to state reasons for [20]. All of these are appli-
cable to ancient science but none of them describe modern 
science. Intelligibility entails the formulation of a conceptual 
system. If we assume that this means the formulation of a 
mathematical model when intelligibility is used in the con-
text of science, then one can accept intelligibility as part of 
science. Meaning and interpretation are not relevant to sci-
ence; rather, they are philosophical categories. Lastly, “ac-
counting for” and “stating reasons for” also refer to philoso-
phical discourse, although one might argue that a model fit-
ted to data “accounts for” the data. In any event, the main 
point is that nowhere among these definitions of explanation 
is there a mention of a designed experiment or predictive 
validation. This is because an everyday word like “explain” 
carries with it an everyday meaning and science is not an 
everyday enterprise.  

 Let us focus on Intelligibility, which may be the interpre-
tation of explanation that is most often confused with sci-
ence. If we take intelligibility to mean that the phenomena 
themselves are grasped by the intellect, then this would im-
ply that Nature is accessible to the human intellect. It is true 
that the mathematical model (conceptual system) is intelligi-
ble, but that is because the mathematical model is con-
structed by humans in accordance with human intelligibility. 
But the model does not mirror the physical world. One might 
argue that what is meant by explanation is mathematical ex-
planation, in the sense that the equations fit the observations. 
Even if we accept this data-fitting meaning of explanation, it 
leaves out the fundamental aspect of scientific meaning – 
prediction.  

 The limits of ordinary understanding have become 
clearer during the Twentieth Century and, accordingly so, 
ordinary understanding cannot be a requirement for scientific 
knowledge. This point is strongly emphasized by Richard 
Feynman in the following statement made before beginning 
a series of lectures on quantum electrodynamics to an audi-
ence of non-specialists: 
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 What I am going to tell you about is what we teach our 
physics students in the third or fourth year of graduate 
school — and you think I'm going to explain it to you so 
you can understand it? No, you're not going to be able to 
understand it…You see, my physics students don't under-
stand it either. That is because I don't understand it. No-
body does... It is whether or not the theory gives predic-
tions that agree with experiment. It is not a question of 
whether a theory is philosophically delightful, or easy to 
understand, or perfectly reasonable from the point of 
view of common sense. The theory of quantum electro-
dynamics describes Nature as absurd from the point of 
view of common sense. And it agrees fully with experi-
ment. So I hope you can accept Nature as she is — ab-
surd [21]. 

The absurdity is not intrinsic to Nature. Absurdity is a hu-
man category and the absurdity of Nature is relative to ordi-
nary human understanding. The philosophical notion that the 
human mind has the capacity to understand Nature in every-
day categories has gone by the wayside. Modern science is 
about prediction, not understanding.  

 It is not that we are without any understanding whatso-
ever; as previously noted, we understand the mathematical 
model. Our knowledge of phenomena resides in the mathe-
matical model, insofar as that knowledge is conceptual. But 
here we must avoid the danger of slipping into rationalism, 
mistaking the conceptual system for Nature herself. Scien-
tific knowledge does not stop with reasoning about possibili-
ties and creating a model. It goes further to include a predic-
tive validation methodology and then actual validation. 
Reichenbach notes that “the very mistake which made ra-
tionalism incompatible with science” is “the mistake of iden-
tifying [scientific] knowledge with mathematical knowl-
edge” [22]. It is here that we see a great danger lying in 
Gould’s formulation. Without operational definitions and 
concomitant experimental protocols for validation, as well as 
the validation itself, the development of “theories that coor-
dinate and explain” facts quickly drifts into rationalism. Rea-
soning, either in the form of conceptual categories such as 
causality or via a mathematical system, is applied to data 
absent any probabilistic quantification relating to the out-
come of future observation. Explanation and opinion replace 
scientific methodology. Whose reasoning do we trust? A 
formal validation procedure settles the matter. 

 Explanations might help one arrive at a mathematical 
model or give one satisfaction, but they are not part of scien-
tific theory. This view is unacceptable to some. A striking 
current example is the intelligent design movement. William 
Dembski, a major proponent of that movement, writes, 
“Admitting design into science can only enrich the scientific 
enterprise. All the tried and true tools of science will remain 
intact. But design adds a new tool to the scientist’s explana-
tory tool chest” [23]. The problem here is that science has no 
“explanatory tool chest.” The scientist has a method. Demb-
ski provides no mathematical model, no operational defini-
tions, and no experimental protocol. In fact, he recognizes 
that intelligent design is not part of science, so he wants to 
return science to the domain of reasoning and explanation, 
where non-predictive arguments concerning complexity and  
 

design can be entertained. In the case of intelligent design, 
the return would be dramatic. The intelligent design argu-
ment is nothing but a re-surfacing of the classical physico-
theological argument that was rejected as scientific by Kant 
in the late Eighteenth Century.  

IS GENOMICS UNDERSTANDABLE 

 When he refers to Nature as being absurd, Feynman is 
not criticizing his understanding of the mathematical systems 
that allow one to model physical phenomena and to make 
predictions regarding those phenomena; rather, he is refer-
ring to a lack of categorical understanding of the physical 
phenomena themselves. Light is conceived as neither wave 
nor particle. Thus, the categorical requirement that it be one 
or the other is violated. From the Kantian perspective, the 
object of sensibility cannot be conformed to the categories of 
understanding and therefore cannot be understood. As a 
product of the human intellect, a mathematical model is ipso 
facto understandable. Nature is not a product of the human 
intellect.  

 Although biology does not present us with the anomalies 
of quantum physics, the problem of understanding remains. 
The need for a systems-based approach, in particular, net-
work modeling, has long been recognized in biology. In their 
famous 1946 paper, Norbert Wiener and Arturo Rosenblueth 
considered the properties of random nets of conducting fi-
bers, which are used to help characterize fibrillation [24]. 
Regarding genomics, in reference to his seminal 1961 paper 
with Francois Jacob [25], Jacques Monod writes, “The logic 
of biological regulatory systems abides not by Hegelian laws 
but, like the workings of a computer, by the propositional 
calculus of George Boole [26]. In 1969, the use of logical 
relationships to characterize gene regulation was formalized 
in the Boolean-network model by Stuart Kauffman [27]. In 
the concluding remarks of his 1966 book, Principles of De-
velopment and Differentiation, Conrad Waddington points 
directly towards a mathematically rigorous systems theory 
when he writes, 

 In my opinion, at least, the three problems immediately 
in front of us are these: What is the nature of the change 
that renders a cell competent, so that it is ready to be 
switched into a particular developmental path? What is it 
that triggers off the switch and puts the cell into a state of 
determination, which is only with difficulty reversible, 
and can normally be transmitted through several cell 
generations? Finally, how are the activities of all the 
genes concerned in any developmental pathway tied to-
gether, so that they proceed in an integrated and orderly 
manner – or does this, perhaps, follow from the answers 
to the first two questions? [28]. 

 The insights of Monod, Kauffman, and Waddington into 
the role of switching networks in biological regulation lead 
at once to the requirement that biological investigation de-
pend on the theory of multivariate dynamical processes, 
which will of necessity be random processes on account of 
latent variables and inherent biological variability, and that 
there is no nonmathematical way to constitute biological 
knowledge. This conclusion is evident in Wiener’s descrip-
tion of his collaboration with Rosenblueth. In the original  
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1948 edition of Cybernetics: or Control and Communication 
in the Animal and Machine, Wiener states, “Thus, as far 
back as four years ago, the group of scientists about Dr. 
Rosenblueth and myself had already become aware of the 
essential unity of the set of problems centering about com-
munication, control, and statistical mechanics, whether in the 
machine or in living tissue” [29]. 

 Biological systems behave as multivariate random proc-
esses of interacting variables and this is the framework in 
which its laws must be formulated. In particular, gene regu-
latory modeling involves stochastic nonlinear dynamical 
systems. These may be continuous or discrete, and they can 
be synchronous or asynchronous. As in all modeling situa-
tions, the more detailed the model, the greater the computa-
tional complexity and the more difficult the inference from 
data. Given a network model, at least two basic issues arise: 
(1) the phenotypic issue – characterizing the steady-state 
behavior of the system, and (2) the translational issue – de-
termination of control strategies to favorably alter the steady-
state behavior of the system. It may be very difficult to char-
acterize the steady-state distribution of the system in terms 
of system parameters. Even if this is done, can one really 
claim to have an understanding of the steady-state distribu-
tion in terms of sensory intuitions regarding the genes? Even 
under the coarsest quantization, a binary network, and only 
10 genes, the transition probability matrix of a Markov regu-
latory model is 1024  1024 and this determines a steady-
state distribution with 1024 states. One is often mystified at 
how small perturbations in the parameters dramatically alter 
the steady-state behavior. Typically, mathematical analysis 
in terms of low-order statistical characteristics of a dynami-
cal process allows application of the system, but even then 
intuition of properties entailed by the covariance matrix is 
rare except in the case of very simple covariance structures. 
The dependency on mathematics and the lack of intuition are 
even more extreme when wants to use the regulatory model 
to determine optimal therapeutic policies [30]. Fundamental, 
and often difficult, mathematical analyses must be performed 
to arrive at control strategies, and these are especially in-
volved if one wishes to achieve robust strategies not overly 
sensitive to system identification or imperfect application of 
control. There is no hope of obtaining categorical under-
standing of a policy’s performance by considering the phe-
nomena themselves. 

 If human beings had sensory experience of traveling near 
the speed of light, then perhaps our ordinary understanding 
would grasp changing masses and clocks slowing or speed-
ing up. If we had sensory experience at the quantum level, 
then perhaps we would display no surprise at the behavior of 
a photon in the famous double-slit experiment. Our difficul-
ties of understanding arise because the categories of our or-
dinary understanding relate to possible sensory experiences. 
These difficulties extend to genomics. We have no sensory 
experience with networks of thousands of nonlinearly inter-
acting nodes exhibiting feedback, distributed regulation, and 
massive redundancy. The reasons for lacking understanding 
are different from those in physics, but they are compelling 
in their own way. Nature is absurd from the human perspec-
tive because we lack the categories of understanding with 
which to intuit it – be it physics or biology.  

THE CURRENT SITUATION IN GENOMICS 

 Almost from the onset of the high-throughput microarray 
era, papers reporting classifiers based on gene-expression 
features have appeared. There have also been cautionary 
warnings about the dangers of misapplication of classifica-
tion methods designed for use with at most hundreds of fea-
tures and many thousands of sample points to data sets with 
thousands or tens of thousands of features (genes) and less 
than one hundred sample points (microarrays) [31-32]. 
Keeping in mind the thousands of gene expressions on a mi-
croarray, consider a sampling of sample sizes for cancer 
classification: acute leukemia, 38 [33]; leukemia, 37 [34]; 
breast cancer, 38 [35]; breast cancer, 22 [36]; follicular lym-
phoma, 24 [37]; glioma, 50 (but only 21 classic tumors used 
for class prediction) [38]; and uveal melanoma, 20 [39]. This 
is a tiny sampling of the host of microarray classification 
papers based on very small samples and selecting feature 
sets from among thousands of genes.  

 Since the foundation of scientific knowledge is predic-
tion, the scientific worth of a classifier depends on the accu-
racy of the error estimate. If a classifier is trained from sam-
ple data and its error estimated, then classifier validity relates 
to the accuracy of the error estimate, since this estimate 
quantifies the predictive capability of the classifier. An in-
ability to evaluate predictive power would constitute an epis-
temological barrier to being able to claim that a classifier 
model is scientifically sound. Certainly, there are mathe-
matical issues at each step in applying classification to mi-
croarray data. Can one design a good classifier given the 
small samples commonplace in genomics? [40] Can one ex-
pect a feature-selection algorithm to find good features under 
these limitations? [41] These concerns, while important for 
obtaining useful classifiers, are epistemologically overridden 
by the concern that the predictive capability, and therefore 
the scientific meaning, of a designed classifier lies with the 
accuracy of the error estimate. Except in trivial cases, there 
has been no evidence provided that acceptable error estima-
tion is possible with so many features and such small sam-
ples. Even worse, in many cases studied it has been shown to 
be impossible [42-45]. Hence, not only have the vast major-
ity of the papers not been shown to possess scientific con-
tent, large numbers of them have been shown not to possess 
scientific content. Braga-Neto writes, “Here, we are facing 
the careless, unsound application of classification methods to 
small-sample microarray data, which has generated a large 
number of publications and an equally large amount of un-
substantiated scientific hypotheses” [40]. The failure of the 
research community to demand solid mathematical demon-
strations of the validity of the classification methods used 
with the type of data available has resulted in a large number 
of papers lacking scientific content. 

 Many epistemological issues in genomics relate to statis-
tics. Mehta et al. write, “Many papers aimed at the high-
dimensional biology community describe the development or 
application of statistical techniques. The validity of many of 
these is questionable, and a shared understanding about the 
epistemological foundations of the statistical methods them-
selves seems to be lacking” [46]. They are calling attention 
to a lack of sound statistical epistemology, which renders the 
results meaningless. The point is further emphasized by Du-
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puy and Simon, who write, “Both the validity and the repro-
ducibility of microarray-based clinical research have been 
challenged”

 
[47]. To examine the issue, they have reviewed 

90 studies, 76% of which were published in journals having 
impact factor larger than 6. Based on a detailed analysis of 
the 42 studies published in 2004, they report: 

 Twenty-one (50%) of them contained at least one of the 
following three basic flaws: (1) in outcome-related gene 
finding, an unstated, unclear, or inadequate control for 
multiple testing; (2) in class discovery, a spurious claim 
of correlation between clusters and clinical outcome, 
made after clustering samples using a selection of out-
come-related differentially expressed genes; or (3) in su-
pervised prediction, a biased estimation of the prediction 
accuracy through an incorrect cross-validation procedure 
[47]. 

The situation is actually much worse than stated here, since 
in high-dimensional, small-sample settings, cross-validation 
error estimation, which is ubiquitous in microarray studies, 
does not provide acceptable error estimation (as will be illus-
trated in the following paragraph) [42-45]. Thus, using cross-
validation in supervised prediction undermines scientific 
validity. 

 The consequences of ignoring epistemology can be illus-
trated by considering gene-expression classification. As 
commonly practiced, a feature set is found from among thou-
sands of genes via some feature-selection algorithm, a 
classifier based on this set is trained on a small sample of 
less than 100 microarrays, and its error is estimated using the 
training data, often by cross-validation, even though cross-
validation possesses large variance when used with small 
samples [42].

 
The validity of the classifier model, which 

consists of classifier and error estimate, depends on the accu-
racy of the error estimate. Unfortunately, in such a scenario 
the estimated and true errors are often virtually uncorrelated, 
as we will now demonstrate with an example [45]. The data 
are from a micorarray experiment relating to lung cancer 
[48]. There are 203 tumors (microarrays), 139 adenocarci-
noma and 64 other tumor types. The 2000 genes with the 
highest variance are used. On each trial, 50 microarrays are 
randomly chosen, a feature-selection algorithm (in this ex-
periment, t-test feature selection) is used to select 20 genes 
and a 3-nearest-neighbor classifier is trained. The true error 
of the trained classifier is estimated using the 153 microar-
rays not selected. Given this large test set, the true error 
should be well-estimated and this estimate is taken as the 
true error. The training-data error estimate, which is what 
would be found in a 50-microarray experiment, is obtained 
using 5-repeat, 5-fold cross-validation. 10,000 independent 
trials are performed. The scatter plot of the cross-validation 
versus true-error pairs is shown in Fig. (1), together with the 
regression line. The line is almost horizontal, indicating vir-
tually no regression of the true error on the estimated error. 
The correlation between the true and estimated errors is 0.04. 
This, together with the large spread of the scatter plot, shows 
that the estimated error is essentially useless in predicting the 
true error. Thus, the trained classifier model is meaningless! 

 Recognizing the risks of small-sample classifier design, 
authors have sometimes proposed using additional computa-
tional analyses to support a given classification result [49-

50]. Unfortunately, the supporting methods themselves may 
not have been demonstrated to be informative. For instance, 
some papers suggest the use of permutation-based p values 
for obtaining information regarding the selection of relevant 
genes or for assessing the quality of classification. Essen-
tially, a statistic relating to class discrimination is computed 
from the data, the class labels are randomized some large 
number of times, the statistic is computed for each re-
labeling, a histogram is formed from these re-labeled statis-
tics, and the p value of the statistic corresponding to the ac-
tual labeling is computed. The issue is whether this p value is 
informative. If the p value gives insight into the distribution 
of the error or the reliability of the estimated error, then an 
argument can be made for using the p value to assess classi-
fiers. Since the randomly re-labeled data contain little or no 
information on the true joint distribution of the labels and the 
gene-expression levels, any insight based on the p value 
must come solely from the estimated error. To be specific, if 

0 and 1 are the error estimates for the randomized and ac-
tual data, respectively, then p is the probability that 0  1. 
Intuitively, the null hypothesis H0 is that the classifier does 
not discriminate and the alternative hypothesis H1 is that it 
does discriminate. The top part of Fig. (2) gives the p value 
as a function of the estimated error for the actual data and the 
bottom part gives the distribution of the error estimates, 
these being for 3-nearest-neighbor classification, sample size 
40, leave-one-out cross-validation error estimation, and a 
Gaussian model for which the optimal classifier has error 
0.10 [51]. Comparing the two parts of the figure, we see that, 
for the region where the mass of the error estimates lie, there 
is no regression of the p value on the error estimate. Thus, 
the p value says essentially nothing about the error and is 
therefore useless as a classifier performance measure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (1). Regression of the true error on the estimated error. 

 Experimental design is a key element in drawing statisti-
cal conclusions. A properly designed experiment can sub-
stantially increase the power of the conclusions, whereas a 
poorly designed experiment can make it impossible to draw 
meaningful conclusions. Potter has drawn attention to this 
issue in the context of high-throughput biological data by 
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distinguishing between mere observation and experimental 
design, the fundamental distinction between pre-modern and 
modern science:  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Regression of the permutation p value on the estimated 

error: Top part: p value as a function of the estimated error for ac-
tual data. Bottom part: error distribution, 

 Making the observations with new and powerful technol-
ogy seems to induce amnesia as to the original nature of 
the study design. It is though astronomers were to ignore 
every thing they knew both about how to classify stars 
and about sampling methods, and instead were to point 
spectroscopes haphazardly at stars and note how different 
and interesting the pattern of spectral absorption lines 
were. Nonetheless, I doubt the astronomers would claim 
to be doing an experiment. This dilettante’s approach to 
either astronomy or biology has not been in vogue for at 
least half a century [32]. 

In fact, it has not been in vogue since Galileo and Torricelli. 
Are we to return to “groping in the dark?” 

 In this vein, the ubiquity of data mining techniques is 
particularly worrisome. These tend to search for patterns in 
existing data without regard to experimental design or pre-
dictive capability. Keller points out the danger of trying to 
draw grand inferences from patterns found in data.

 
Referring 

to William Feller’s classic text [52] on probability theory, 
she writes,  

 By 1971, the attempt to fit empirical phenomena to such 
distributions was already so widespread that Feller felt 
obliged to warn his readers against their over-
use....Feller’s emphasis on the logistic curve as ‘an ex-
plicit example of how misleading a mere goodness of fit 
can be’ was motivated precisely by the persistence of 
such ‘naïve reasoning’ [53]. 

Data mining is often erroneously identified with pattern rec-
ognition when, in fact, they are very different subjects. Pat-
tern recognition can be used as a basis for science because it 

is based on a rigorous probabilistic framework [54]. On the 
other hand, all too often, data mining techniques consist of a 
collection of computational techniques backed by heuristics 
and lacking any mathematical theory of error, and therefore 
lacking the potential to constitute scientific knowledge. 

 

 While inattention to epistemology in genomic classifica-
tion is troubling, the situation with clustering is truly as-
tounding. As generally practiced, there is no predictive as-
pect and hence no scientific content whatsoever. Indeed, Jain 
et al. state that "clustering is a subjective process,” [55] so 
that it lacks the basic scientific requirement of inter-
subjectivity. In the context of genomics, Kerr and Churchill 
have asked the epistemological question: “How does one 
make statistical inferences based on clustering” [56]. Infer-
ences are possible when clustering is put on a sound prob-
abilistic (predictive) footing by recognizing that, whereas the 
epistemology of classification lies in the domain of random 
variables, [54] the epistemology of clustering must lie within 
the framework of random sets [57]. A great deal of study 
needs to be done in this direction before clustering can prac-
tically provide scientific knowledge. In the mean time, so-
called “validation indices” are sometimes used to support a 
clustering result, but these are often poorly correlated to the 
clustering error and therefore do not provide scientific vali-
dation [58]. 

 Epistemological considerations for genomics inexorably 
point to systems biology. It would seem obvious that systems 
biology should be based on systems theory, which, as we 
have discussed, is a direction clearly pointed to a half cen-
tury ago in the work of Wiener, Rosenblueth, Monod, Wad-
dington, Kauffman, and others. It is the approach taken in 
genomic signal processing, where both the dynamics of gene 
regulatory networks and their external control are being pur-
sued within the context of systems theory [59]. Genomic 
research has mostly taken a different path. Based upon the 
historical path of genomics, Wolkenhauer goes so far as to 
virtually cleave genomics from systems biology when he 
writes,  

 The role of systems theory in systems biology is to eluci-
date the functional organization of cells. This is a com-
plementary but very different effort to genomics, bio-
physics, and molecular biology, whose primary role it 
has been to discover and characterize the components of 
the cell – to describe its structural organization. A basic 
philosophical point systems theory makes is that objects 
and relations between objects have the same ontological 
status. Life is a relation among molecules/cells and not a 
property of any molecule/cell; a cell is built up of mole-
cules, as a house is with stones. A soup of molecules is 
no more a cell than a plane is a heap of metal [60]. 

Wolkenhauer is making an empirical observation regarding a 
widespread inattention to systems theory. Genomics, being 
the study of multivariate interactions among cellular compo-
nents, requires systems-based modeling, in particular, the use 
of nonlinear stochastic dynamical systems, whether these be 
in the form of differential equations, discrete networks, 
Markov processes, or some other form of random process. 
Science and engineering have more than half a century of 
experience with stochastic systems. Since it is impossible to 
conceive of modern communication and control systems 
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absent their being grounded in systems theory, it is surely 
impossible to conceive of meaningful progress in genomics 
without the use (and extension of) this theory. Of course, 
there are obstacles. Experiments need to be designed and 
carried out in a manner suitable for the construction of non-
linear dynamical systems and systems theory needs to be 
developed in ways appropriate to biological modeling [61]. 
These are imposing tasks. Nonetheless, based on our long 
experience with humanly designed systems it is virtually 
certain that the study of biological systems cannot meaning-
fully progress without well thought out experiments and 
deep mathematics.  

CONCLUSION 

 Is the epistemological crisis in genomics critical or topi-
cal? I believe it is topical. New models and perhaps new 
mathematics will be required, but there is no need to alter the 
Twentieth Century scientific epistemology. If one disagrees, 
then he or she must propose a different epistemology and 
seek to justify it prior to making any scientific claims. For 
instance, those who argue that it is scientifically legitimate to 
apply error estimation rules whose properties are unknown 
are in the position of having to deny the fundamental role of 
prediction in science. Unless one is willing to return to me-
dieval thinking, denial of prediction as the operational 
ground of science would require the formulation of a new 
ground upon which to relate events. Denial of the role of 
mathematics as the carrier of scientific knowledge would 
require the introduction of another kind of language in which 
to make scientific statements precise, inter-subjective, and 
quantifiable. Denial of the role of designed experiments 
aimed at extracting specific information would mean a return 
to the “groping in the dark” of pre-Galilean science. And 
denial of the requirement for operational definitions would 
sunder measurements from reason and lead to a form of neo-
rationalism that, in Einstein’s words, would degenerate into 
“empty talk.”  
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