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Scientific knowledge is possible with
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Abstract

A typical small-sample biomarker classification paper discriminates between types of pathology based on, say, 30,000
genes and a small labeled sample of less than 100 points. Some classification rule is used to design the classifier from
this data, but we are given no good reason or conditions under which this algorithm should perform well. An error
estimation rule is used to estimate the classification error on the population using the same data, but once again we
are given no good reason or conditions under which this error estimator should produce a good estimate, and thus
we do not know how well the classifier should be expected to perform. In fact, virtually, in all such papers the error
estimate is expected to be highly inaccurate. In short, we are given no justification for any claims.
Given the ubiquity of vacuous small-sample classification papers in the literature, one could easily conclude
that scientific knowledge is impossible in small-sample settings. It is not that thousands of papers overtly claim that
scientific knowledge is impossible in regard to their content; rather, it is that they utilize methods that preclude
scientific knowledge. In this paper, we argue to the contrary that scientific knowledge in small-sample classification is
possible provided there is sufficient prior knowledge. A natural way to proceed, discussed herein, is via a paradigm for
pattern recognition in which we incorporate prior knowledge in the whole classification procedure (classifier design
and error estimation), optimize each step of the procedure given available information, and obtain theoretical
measures of performance for both classifiers and error estimators, the latter being the critical epistemological issue. In
sum, we can achieve scientific validation for a proposed small-sample classifier and its error estimate.

Review
Introduction
It is implicit in the title of this paper that one can enter-
tain the possibility that scientific knowledge is impossible
with small-sample classification. In fact, not only might
one entertain this impossibility, but perusal of the related
literature would most likely lead one to seriously consider
that impossibility. It is not that thousands of papers overtly
claim that scientific knowledge is impossible with regards
to their content; rather, it is that they utilize methods
that, ipso facto, cannot lead to knowledge. Even though it
appears to be almost universally, if tacitly, assumed that
scientific knowledge is impossible with small-sample clas-
sification - otherwise, why do so many not aspire to such
knowledge - we argue to the contrary in this paper that
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scientific knowledge is possible. But before we make our
case, let us examine in more detail why the literature may
lead one to believe otherwise.
Consider the following common motif for a small-

sample-classification paper, for instance, one proposing a
classifier based on gene expression to discriminate types
of pathology, stages of a disease, duration of survival,
or some other phenotypic difference. Beginning with
30,000 features (genes) and less than 100 labeled sample
points (microarrays), some classification rule (algorithm)
is selected, perhaps an old one or a new one proposed in
the paper.We are given no good reason why this algorithm
should perform well. The classification rule is applied to
the data and, using the same data, an error estimation
rule is used to estimate the classification error on the
population, meaning in practice the error rate on future
observations. Once again, we are given no good reason
why this error estimator should produce a good esti-
mate; in fact, virtually, in all such papers, from what we
know about the error estimation rule we would expect
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the estimate to be inaccurate. At this point, one of two
claims is made. If the classification rule is a well-known
rule and the purpose of the paper is to produce a classi-
fier for application (say, a biomarker panel), we are told
that the authors have achieved their goal of finding such
a classifier and its accuracy is validated by the error esti-
mate. If, on the other hand, the purpose is to devise a new
classification rule, we are told that the efficacy of the new
rule has been validated by its performance, as measured
by the error estimate or, by several such error estimates on
several different data sets. In either case, we are given no
justification for the validation claim. Moreover, in the sec-
ond case, we are not told the conditions under which the
classification rule should be expected to perform well or
how well it should be expected to perform.
Amid all of this vacuity, perhaps the reporting of error

estimates whose accuracy is a complete mystery is the
most puzzling from a scientific perspective. To borrow a
metaphor [1], one can imagine Harold Cramér leisurely
sailing on the Baltic off the coast of Stockholm, taking
in the sights and sounds of the sea, when suddenly a
gene-expression classifier to detect prostate cancer pops
into his head. No classification rule has been applied,
nor is that necessary. All that matters is that Cramér’s
imagination has produced a classifier that operates on
the feature-label distribution of interest with a sufficiently
small error rate. Since scientific validity depends on the
predictive capacity of a model, while an appropriate clas-
sification rule is certainly beneficial to classifier design,
epistemologically, the error rate is paramount. Were we to
know the feature-label distribution of interest, we could
exactly determine the error rate of the proposed classi-
fier. Absent knowledge of the feature-label distribution,
the actual error must be estimated from data and the
accuracy of the estimate judged from the performance
of the error estimation rule employed. Consequently, any
paper that applies an error estimation rule without pro-
viding a performance characterization relevant to the data
at hand is scientifically vacuous. Given the near univer-
sality of vacuous small-sample classification papers in the
literature, one could easily reach the conclusion that sci-
entific knowledge is impossible in small-sample settings.
Of course, this would beg the question of why people are
writing vacuous papers and why journals are publishing
them. Since the latter are sociological questions, they are
outside the domain of the current paper. We will focus on
the scientific issues.

Epistemological digression
Before proceeding, we digress momentarily for some very
brief comments regarding scientific epistemology (refer-
ring to [2] for a comprehensive treatise and to [3] for a
discussion aimed at biology and including classifier valid-
ity). Our aim is narrow, simply to emphasize the role of

prediction in scientific knowledge, not to indulge in broad
philosophical issues.
A scientific theory consists of two parts: (1) a mathe-

matical model composed of symbols (variables and rela-
tions between the variables), and (2) a set of operational
definitions that relate the symbols to data. Amathematical
model alone does not constitute a scientific theory. The
formal mathematical structure must yield experimental
predictions in accord with experimental observations. As
put succinctly by Richard Feynman, “It is whether or not
the theory gives predictions that agree with experiment.
It is not a question of whether a theory is philosophically
delightful, or easy to understand, or perfectly reasonable
from the point of view of common sense” [4]. Model valid-
ity is characterized by predictive relations, without which
the model lacks empirical content. Validation requires
that the symbols be tied to observations by some semantic
rules that relate not necessarily to the general principles
of the mathematical model themselves but to conclu-
sions drawn from the principles. There must be a clearly
defined tie between the mathematical model and experi-
mental methodology. Philipp Frank writes, “Reichenbach
had explicitly pointed out that what is needed is a bridge
between the symbolic system of axioms and the proto-
cols of the laboratory. But the nature of this bridge had
been only vaguely described. Bridgman was the first who
said precisely that these relations of coordination con-
sist in the description of physical operations. He called
them, therefore, operational definitions” [5]. Elsewhere,
we have written, “Operational definitions are required,
but their exact formulation in a given circumstance is
left open. Their specification constitutes an epistemo-
logical issue that must be addressed in mathematical
(including logical) statements. Absent such a specifica-
tion, a purported scientific theory is meaningless” [6].
The validity of a scientific theory depends on the choice

of validity criteria and the mathematical properties of
those criteria. The observational measurements and the
manner in which they are to be compared to the math-
ematical model must be formally specified. The validity
of a theory is relative to this specification, but what is
not at issue is the necessity of a set of relations tying
the model to operational measurements. Formal specifi-
cation is mandatory and this necessarily takes the form
of mathematical (including logical) statements. Formal
specification is especially important in stochastic settings
where experimental outcomes reflect the randomness of
the stochastic system so that one must carefully define
how the outcomes are to be interpreted.
Story telling and intuitive arguments cannot suffice.

Not only is complex-system behavior often unintuitive,
but stochastic processes and statistics often contradict
naïve probabilistic notions gathered from simple experi-
ments like rolling dice. Perhaps even worse is an appeal
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to pretty pictures drawn with computer software. The lit-
erature abounds with data partitioned according to some
clustering algorithm whose partitioning performance is
unknown or, even more strangely, justified by some
“validation index” that is poorly, if at all, correlated with
the error rate of the clustering algorithm [7]. The pretty
pictures are usually multi-colored and augmented with all
kinds of attractive-looking symbols. They are inevitably
followed by some anecdotal commentary. Although all
of this may be delightful, it is scientifically meaningless.
Putting the artistic touches and enormous calculations
aside, all we are presented with is a radical empiricism.
Is there any knowledge here? Hans Reichenbach answers,
“A mere report of relations observed in the past cannot
be called knowledge. If knowledge is to reveal objec-
tive relations of physical objects, it must include reliable
predictions. A radical empiricism, therefore, denies the
possibility of knowledge” [2]. A collection of measure-
ments together with a commentary on the measurements
is not scientific knowledge. Indeed, the entire approach
“denies the possibility of knowledge,” so that its adoption
constitutes a declaration of meaninglessness.

Classification error
For two-class classification, the population is character-
ized by a feature-label distribution F for a random pair
(X,Y ), whereX is a vector ofD features and Y is the binary
label, 0 or 1, of the class containing X. A classifier is a
function, ψ , which assigns a binary label, ψ(X), to each
feature vector. The error, ε[ψ], of ψ is the probability,
P(ψ(X) �= Y ), that ψ yields an erroneous label. A clas-
sifier with minimum error among all classifiers is known
as a Bayes classifier for the feature-label distribution.
The minimum error is called the Bayes error. Epistemo-
logically, the error is the key issue since it quantifies the
predictive capacity of the classifier.
Abstractly, any pair M = (ψ , εψ) composed of a func-

tion ψ : R
D → {0, 1} and a real number εψ ∈ [ 0, 1]

constitutes a classifier model, with εψ being simply a num-
ber, not necessarily specifying an actual error probability
corresponding to ψ .M becomes a scientific model when
it is applied to a feature-label distribution. In practice,
the feature-label distribution is unknown and a classifi-
cation rule �n is used to design a classifier ψn from a
random sample Sn = {(X1,Y1), (X2,Y2), . . . , (Xn,Yn)} of
pairs drawn from the feature-label distribution. Note that
a classification rule is a sequence of rules depending on the
sample size n. If feature selection is involved, then it is part
of the classification rule. A designed classifier produces
a classifier model, namely, (ψn, ε[ψn] ). Since the true
classifier error ε[ψn] depends on the feature-label distri-
bution, which is unknown, ε[ψn] is unknown. The true
error must be estimated by an estimation rule, �n. Thus,
the random sample Sn yields a classifier ψn = �n(Sn) and

an error estimate ε̂[ψn]= �n(Sn), which together con-
stitute a classifier model (ψn, ε̂[ψn] ). Overall, classifier
design involves a rule model (�n,�n) used to determine
a sample-dependent classifier model (ψn, ε̂[ψn] ). Both
(ψn, ε[ψn] ) and (ψn, ε̂[ψn] ) are random pairs relative to
the sampling distribution.
Given a feature-label distribution, error estimation

accuracy is commonlymeasured by themean-square error
(MSE), defined by MSE(ε̂) = E[ (ε̂ − ε)2], where for nota-
tional ease we denote ε[ψn] and ε̂[ψn] by ε and ε̂, respec-
tively, or, equivalently, by the square root of the MSE,
known as the root-mean-square (RMS). The expectation
used here is relative to the sampling distribution induced
by the feature-label distribution. The MSE is decomposed
into the bias, Bias(ε̂) = E[ ε̂ − ε], of the error estima-
tor relative to the true error, and the deviation variance,
Vardev(ε̂) = Var(ε̂ − ε), by

MSE(ε̂) = Vardev(ε̂) + Bias(ε̂)2. (1)

When a large amount of data is available, the sample can
be split into independent training and test sets, the classi-
fier being designed on the training data and its error being
estimated by the proportion of errors on the test data,
which is known as the holdout estimator. For holdout, we
have the distribution-free bound RMS(̂εholdout|Sn−m, F) ≤
1/

√
4m, where m is the size of the test sample, Sn−m is

the training sample and F is any feature-label distribution
[8]. RMS(̂ε|Z) indicates that the expectation in the RMS
is conditioned on the random vector Z. But when data are
limited, the sample cannot be split without leaving too lit-
tle data to design a good classifier. Hence, training and
error estimation must take place on the same data set.
The consequences of training-set error estimation are

readily explained by the following formula for the devia-
tion variance:

Vardev(ε̂) = σ 2
ε̂

+ σ 2
ε − 2ρσε̂σε , (2)

where σ 2
ε̂
, σ 2

ε , and ρ are the variance of the error estimate,
the variance of the error, and the correlation between
the estimated and true errors, respectively. The deviation
variance is driven down by small variances or a correlation
coefficient near 1.
Consider the popular cross-validation error estimator.

For it, the error is estimated on the training data by ran-
domly splitting the training data into k folds (subsets),
Sin, for i = 1, 2, ..., k, training k classifiers on Sn − Sin,
for i = 1, 2, ..., k, calculating the proportion of errors of
each designed classifier on the appropriate left-out fold,
and then averaging these proportions to obtain the cross-
validation estimate of the originally designed classifier.
Various enhancements are made, such as by repeating
the process some number of times and averaging. Letting
k=n yields the leave-one-out estimator. The problemwith
cross-validation is evident from (2): for small samples,



Dougherty and Dalton EURASIP Journal on Bioinformatics and Systems Biology 2013, 2013:10 Page 4 of 12
http://bsb.eurasipjournals.com/content/2013/1/10

it has large variance and little correlation with the true
error. Hence, although with small folds, cross-validation
does not suffer too much from bias, it typically has large
deviation variance.
To illustrate the matter, we reproduce an example from

[9] based on real patient data from a study involving
microarrays prepared with RNA from breast tumor spec-
imens from 295 patients, 115 and 180 belonging to the
good-prognosis and poor-prognosis classes, respectively.
The dataset is reduced to the 2,000 genes with highest
variance, these are reduced to 10 via t test feature selec-
tion, and a classifier is designed using linear discriminant
analysis (LDA). In the simulations, the data are split into
two sets. The first set, consisting of 50 examples drawn
without replacement from the full dataset, is used for both
training and error estimation via leave-one-out cross-
validation. The remaining examples are used as a hold-out
test set to get an accurate estimate of the true error, which
is taken as the true error. There is an assumption that such
a hold-out size will give an accurate estimate of the true
error. This procedure is repeated 10,000 times. Figure 1
shows the scatter plot for the pairs of true and estimated
errors, along with the linear regression of the true error
on the estimated error. The means are shown on the
axes. What we observe is typical for small samples: large
variance and negligible regression between the true and
estimated errors [10]. Indeed, one even sees negatively
sloping regression lines for cross-validation and boot-
strap (another resampling error estimator), and negative

Figure 1 Linear regression between cross-validation and the
true error. Scatter plot and linear regression for cross-validation
(horizontal axis) and the true error (vertical axis) with sample size 50 for
linear discrimination between two classes of breast cancer patients.

correlation between the true and cross-validation esti-
mated errors has been mathematically demonstrated in
some basic models [11]. Such error estimates are worth-
less and can lead to a huge waste of resources in trying to
reproduce them [9].

RMS bounds
Suppose a sample is collected, a classification rule �n
applied, and the classifier error estimated by an error-
estimation rule �n to arrive at the classifier model
(ψn, ε̂[ψn] ). If no assumptions are posited regarding the
feature-label distribution, then the entire procedure is
completely distribution-free. There are three possibilities.
First, if no validity criterion is specified, then the clas-
sifier model is ipso facto epistemologically meaningless.
Second, if a validity criterion is specified, say RMS, and
no distribution-free results are known about the RMS for
�n and �n, then again the model is meaningless. Third,
if there exist distribution-free RMS bounds concerning
�n and �n, then these bounds can, in principle, be used
to quantify the performance of the error estimator and
thereby quantify model validity.
Regarding the third possibility, the following is an exam-

ple of a distribution-free RMS bound for the leave-one-
out error estimator with the discrete histogram rule and
tie-breaking in the direction of class 0 [8]:

RMS(̂εloo|F) ≤
√
1 + 6/e

n
+ 6√

π (n − 1)
, (3)

where F is any feature-label distribution. Although this
bound holds for all distributions, it is useless for small
samples: for n = 200 this bound is 0.506. In general, there
are very few cases in which distribution-free bounds are
known and, when they are known, they are useless for
small samples.
Distribution-based bounds are needed. These require

knowledge of the RMS, which means knowledge concern-
ing the second-order moments of the joint distribution
between the true and estimated errors. More generally,
to fully understand an error estimator we need to know
its joint distribution with the true error. Oddly, this prob-
lem has historically been ignored in pattern recognition,
notwithstanding the fact that error estimation is the epis-
temological ground for classification. Going back to the
1970s there were some results on themean and variance of
some error estimators for the Gaussian model using LDA.
In 1966, Hills obtained the expected value of the resub-
stitution and plug-in estimators in the univariate model
with known common variance [12]. The resubstitution
estimate is simply a count of the classification errors
on the training data and the plug-in estimate is found
by using the data to estimate the feature-label distribu-
tion and then finding the error of the designed classifier
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on the estimated distribution. In 1972, Foley obtained
the expected value of resubstitution in the multivari-
ate model with known common covariance matrix [13].
In 1973, Sorum derived results for the expected value
and variance for both resubstitution and leave-one-out
in the univariate model with known common variance
[14]. In 1973, McLachlan derived an asymptotic rep-
resentation for the expected value of resubstitution in
the multivariate model with unknown common covari-
ance matrix [15]. In 1975, Moran obtained new results
for the expected value of resubstitution and plug-in for
the multivariate model with known covariance matrix
[16]. In 1977, Goldstein and Wolf obtained the expected
value of resubstitution for multinomial discrimination
[17]. Following the latter, there was a gap of 15 years
before Davison and Hall derived asymptotic represen-
tations for the expected value and variance of boot-
strap and leave-one-out in the univariate Gaussian model
with unknown and possibly different covariances [18].
This is the only paper we know of providing analytic
results for moments of common error estimators between
1977 and 2005. None of these papers provided repre-
sentation of the joint distribution or representation of
second-order mixed moments, which are needed for
the RMS.
This problem has only recently been addressed begin-

ning in 2005, in particular, for the resubstitution and
leave-one-out estimators. For the multinomial model,
complete enumeration was used to obtain the marginal
distributions for the error estimators [11] and then the
joint distributions [19]. Exact closed-form representa-
tions for second-order moments, including the mixed
moments, were obtained, thereby obtaining exact RMS
representations for both estimators [11]. For the Gaussian
model using LDA in 2009, we obtained the exact marginal
distributions for both estimators in the univariate model
(known but not necessarily equal class variances) and
approximations in the multivariate model (known and
equal class covariance matrices) [20]. Subsequently, these
were extended to the joint distributions for the true
and estimated errors in a Gaussian model [21]. Recently
exact closed-form representations for the second-order
moments in the univariate model without assuming equal
covariances were discovered, thereby providing exact
expression of the RMS for both estimators [22]. More-
over, double asymptotic representations for the second-
order moments in the multivariate model, sample size and
dimension approaching infinity at a fixed rate between
the two, were found, thereby providing double asymp-
totic expressions for the RMS [23]. Finite sample approx-
imations from the double asymptotic method have been
shown to possess better accuracy than various simple
asymptotic representations (although much more work is
needed on this issue) [24,25].

Validity
Let us now consider validity. An obvious way to proceed
would be to say that a classifier model (ψ , εψ) is valid
for the feature-label distribution F to the extent that εψ

approximates the classifier error, ε[ψ], on F, where the
degree of approximation is measured by some distance
between εψ and ε[ψ]. For a classifier ψn designed from a
specific sample, this would mean that we want to measure
some distance between ε = ε[ψn] and ε̂ = ε̂[ψn], say
|ε − ε̂|. To do this, we would have to know the true error
and to know that we would need to know F. But if we knew
F, we would use the Bayes classifier and would not need to
design a classifier from sample data. Since it is the preci-
sion of the error estimate that is of consequence, a natural
way to proceed would be to characterize validity in terms
of the precision of the error estimator ε̂[ψn]= �n(Sn)
as an estimator of ε[ψn], say by RMS(ε̂). This makes
sense because both the true and estimated errors are ran-
dom functions of the sample and the RMS measures their
closeness across the sampling distribution. But again there
is a catch: the RMS depends on F, which we do not know.
Thus, given the sample without knowledge of F, we cannot
compute the RMS.
To proceed, prior knowledge is required, in the sense

that we need to assume that the actual (unknown) feature-
label distribution belongs to some uncertainty class, U ,
of feature-label distributions. Once RMS representations
have been obtained for feature-label distributions in
U , distribution-based RMS bounds follow: RMS(ε̂) ≤
maxG∈U RMS(ε̂|G) , where RMS(ε̂|G) is the RMS of the
error estimator under the assumption that the feature-
label distribution isG. We do not know the actual feature-
label distribution precisely, but prior knowledge allows
us to bound the RMS. For instance, consider using LDA
with a feature-label distribution having two equally prob-
able Gaussian class-conditional densities sharing a known
covariance matrix. For this model the Bayes error is a one-
to-one decreasing function of the distance, m, between
the means. Figure 2a shows the RMS to be a one-to-one
increasing function of the Bayes error for leave-one-out
for dimension D = 10 and sample sizes n = 20, 40, 60,
the RMS and Bayes errors being on the y and x axes,
respectively.
Assuming a parameterized model in which the RMS is

an increasing function of the Bayes error, εbay, we can
pose the following question: Given sample size n and
λ > 0, what is the maximum value, maxBayes(λ), of the
Bayes error such that RMS(ε̂) ≤ λ? If RMS is the mea-
sure of validity and λ represents the largest acceptable
RMS for the classifier model to be considered meaning-
ful, then the epistemological requirement is characterized
by maxBayes(λ). Given the relationship between model
parameters and the Bayes error, the inequality εbay ≤
maxBayes(λ) can be solved in terms of the parameters to
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D = 10

(a)

D = 10

4

(b)

Figure 2 RMS andmaxBayes(λ). (a) RMS (y-axis) as a function of the Bayes error (x-axis) for leave-one-out with dimension D = 10 and sample
sizes n = 20 (plus sign), 40 (triangle), 60 (circle); (b)maxBayes(λ) curves corresponding to the RMS curves in part (a).

arrive at a necessary modeling assumption. In the preced-
ing Gaussian example, since εbay is a decreasing function
of m, we obtain an inequality m ≥ m(λ). Figure 2b
shows the maxBayes(λ) curves corresponding to the RMS
curves in Figure 2a [26]. These curves show that, assum-
ing Gaussian class-conditional densities and a known
common covariance matrix, further assumptions must be
made to insure that the RMS is sufficiently small to make
the classifier model meaningful.
To have scientific content, small-sample classification

requires prior knowledge. Regarding the feature-label dis-
tribution, there are two extremes: (1) the feature-label
distribution is known, in which case the entire classifi-
cation problem collapses to finding the Bayes classifier
and Bayes error, so there is no classifier design or error
estimation issue; and (2) the uncertainty class consists of
all feature-label distributions, the distribution-free case,
and we typically have no bound, or one that is too loose
for practice. In the middle ground, there is a trade-off
between the size of the uncertainty class and the size of
the sample. The uncertainty classmust be sufficiently con-
strained (equivalently, the prior knowledge must be suf-
ficiently great) that an acceptable bound can be achieved
with an acceptable sample size.

MMSE error estimation
Given that one needs a distributional model to achieve
useful performance bounds for classifier error estimation,
an obvious course of action is to find or define a prior
over the uncertainty class of feature-label distributions,
and then find an optimal minimum-mean-square-error
(MMSE) error estimator relative to that class [27]. This
results in a Bayesian approach with the uncertainty class
being given a prior distribution and the data being used
to construct a posterior distribution, which quantifies
everything we know about the feature-label distribution.

Benefits of the Bayesian approach are (1) we can incorpo-
rate prior knowledge in the whole classification procedure
(classifier design and error estimation), which, as we have
argued above, is desperately needed in a small-sample set-
ting where the data provide only a meager amount of
information; (2) given the mathematical framework, we
can optimize each step of the procedure, further address-
ing the poor performance suffered in small samples; and
(3) we can obtain theoretical measures of the perfor-
mance for both arbitrary classifiers (via the MMSE error
estimator) and arbitrary error estimators (via the sample
conditionedMSE), perhaps the most important advantage
epistemologically. We begin with an overview of optimal
MMSE error estimation.
Assume that a sample point has a prior probability c

of coming from class 0, and that the class-0 conditional
distribution is parameterized by θ0 and class 1 is param-
eterized by θ1. Considering both classes, our model is
completely parameterized by θ = {c, θ0, θ1}. Given a ran-
dom sample, Sn, we design a classifier ψn and wish to
minimize the MSE between its true error, ε (a function
of θ and ψn), and an error estimate, ε̂ (a function of Sn
and ψn). A key realization is that the expectation in
the MSE may now be taken over the uncertainty class
conditioned on the observed sample, rather than over
the sampling distribution for a fixed (unknown) feature-
label distribution. The MMSE error estimator is thus the
expected true error, ε̂(ψn, Sn) = Eθ [ ε(ψn, θ)|Sn] . The
expectation given the sample is over the posterior den-
sity of θ , denoted by π∗(θ). Thus, we write the Bayesian
MMSE error estimator with the shorthand ε̂ = Eπ∗ [ ε].
The Bayesian error estimate is not guaranteed to be the

optimal error estimate for any particular feature-label dis-
tribution but optimal for a given sample, and assuming
the parameterized model and prior probabilities, it is both
optimal on average with respect to MSE and unbiased
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when averaged over all parameters and samples. These
implications apply for any classification rule as long as the
classifier is fixed given the sample. To facilitate analytic
representations, we assume c, θ0 and θ1 are all mutu-
ally independent prior to observing the data. Denote the
marginal priors of c, θ0 and θ1 by π(c), π(θ0) and π(θ1),
respectively, and suppose data are used to find each poste-
rior, π∗(c), π∗(θ0) and π∗(θ1), respectively. Independence
is preserved, i.e., π∗(c, θ0, θ1) = π∗(c)π∗(θ0)π∗(θ1) [27].
If ψn is a trained classifier given by ψn (x) = 0 if x ∈ R0

and ψn (x) = 1 if x ∈ R1, where R0 and R1 are measur-
able sets partitioning the sample space, then the true error
of ψn under the distribution parameterized by θ may be
decomposed as

ε(ψn, θ) = c
∫
R1

fθ0 (x|0) dx + (1 − c)
∫
R0

fθ1 (x|1) dx
(4)

= cε0(ψn, θ0) + (1 − c)ε1(ψn, θ1),

where fθy (x|y) is the class-y conditional density assuming
parameter θy is true and εy is the error contributed by class
y. Owing to the posterior independence between c and θ0
and between c and θ1, the BayesianMMSE error estimator
can be expressed as [28]

ε̂ (ψn, Sn) = Eπ∗ [ c] Eπ∗ [ ε0]+(1 − Eπ∗ [ c] )Eπ∗ [ ε1] .
(5)

With a fixed sample and classifier, and given θy, the true
error, εy(ψn, θy), is deterministic. Thus, letting �y be the
parameter space of θy,

Eπ∗ [ εy]=
∫

�y
εy(ψn, θy)π∗(θy)dθy. (6)

Just as the true error for a fixed feature-label distribution
is found from the class-conditional densities, fθy (x|y), the
Bayesian MMSE error estimator for an uncertainty class
can be found from effective class-conditional densities,
which are derived by taking the expectations of the in-
dividual class-conditional densities with respect to the
posterior distribution,

f (x|y) =
∫

�y
fθy (x|y) π∗ (

θy
)
dθy. (7)

Specifically, we obtain an equation for the expected true
error that parallels that of the true error in (4) [29]:

ε̂ (ψn, Sn)=Eπ∗ [c]
∫
R1
f (x|0) dx+(1−Eπ∗ [c] )

∫
R0
f (x|1) dx.

(8)

Application of Bayesian error estimation to real data,
in particular gene-expression microarray data, has been

addressed in [30]. This work provides C code implement-
ing the Bayesian error estimator for Gaussian distribu-
tions and normal-inverse-Wishart priors for both linear
classifiers, with exact closed-form representations, and
non-linear classifiers, where closed form-solutions are
not available and we instead implement a Monte-Carlo
approximation. The code and a toolbox of related utili-
ties are publicly available. In [30] we discuss the suitability
of a Gaussian model with normal-inverse-Wishart pri-
ors for microarray data and propose a feature selection
scheme employing a Shapiro-Wilk Gaussianity test to val-
idate Gaussian modeling assumptions. Furthermore, we
propose a methodology for calibrating normal-inverse-
Wishart priors for microarray data based on a method-
of-moments approach using features discarded by the
feature-selection scheme.

Sample-conditionedMSE
The RMS of an error estimator is used to characterize the
validity of a classifier model. As we have discussed, if we
are in possession of RMS expressions for the feature-label
distributions in an uncertainty class, we can bound the
RMS, so as to insure a given level of performance. In the
case ofMMSE error estimation, the priors provide amath-
ematical framework that can be used for both the anal-
ysis of any error estimator and the design of estimators
with desirable properties or optimal performance. The
posteriors of the distribution parameters imply a (sample-
conditioned) distribution on the true classifier error. This
randomness in the true error comes from our uncer-
tainty in the underlying feature-label distribution (given
the sample). Within the assumed model, this sample-
conditioned distribution of the true error contains the full
information about error estimator accuracy and we may
speak of moments of the true error (for a fixed sample
and classifier), in particular the expectation, variance, and
sample-conditioned MSE, as opposed to simply the MSE
relative to the sampling distribution as in classical error
estimation.
Finding the sample-conditioned MSE of MMSE

Bayesian error estimators amounts to evaluating the
variance of the true error conditioned on the observed
sample [28]. The sample-conditioned MSE converges to
zero almost surely in both discrete and Gaussian models
provided in [31], where closed form expressions for the
MSE are available. Further, the exact MSE for arbitrary
error estimators falls out naturally in the Bayesian model.
That is, if ε̂• is a constant representing an arbitrary error
estimate computed from the sample, then the MSE of ε̂•
can be evaluated directly from that of the Bayesian error
estimator:

MSE(̂ε•|Sn) = MSE(̂ε|Sn) + (̂ε − ε̂•)2.
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MSE(̂ε•|Sn), as well as its square root RMS(̂ε•|Sn), are
minimized when ε̂ = ε̂•.
In a classical approach, nothing is known given a sam-

ple, whereas in a Bayesian approach, the sample condi-
tions uncertainty in the RMS and different samples may
condition it to different extents. Figure 3 shows proba-
bility densities of the sample-conditioned RMS for both
the leave-one-out estimator and Bayesian error estimator
in a discrete model with b = 16 bins. The simulation
generates 10,000 distributions drawn from a prior given
in [31] and 1,000 samples from each distribution. The
unconditional RMS (averaged over both distributions and
samples) for both error estimators is also shown, as well as
the distribution-free RMS bound on leave-one-out given
in (3). In Figure 3, the RMS of the Bayesian error estimator
tends to be very close to 0.05 whereas the leave-one-
out error estimator has a long tail with substantial mass
between 0.05 and 0.2, demonstrating that different sam-
ples can condition the RMS to a very significant extent.
In addition, the unconditional RMS of the Bayesian error
estimator is less than half that of leave-one-out, while
Devroye’s distribution-free bound on the unconditional
RMS is too loose to be useful. Hence, not only does a
Bayesian framework permit us to obtain an optimal error
estimator and its RMS conditioned on the sample, but
performance improvement can be significant.
In [31], a bound on the sample-conditioned RMS of

the Bayesian error estimator is provided for the dis-
crete model. With any classifier, beta priors on c and
Dirichlet priors on the bin probabilities satisfying mild
conditions, and given a sample Sn, RMS(̂εBEE|Sn) ≤
1/

√
4n. For comparison, consider the holdout bound

RMS(̂εholdout|Sn−m, F) ≤ 1/
√
4m, where m is the size
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pd
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≤

Figure 3 Sample-conditioned RMS probability densities.
Probability densities for the sample-conditioned RMS of
leave-one-out (dashed line) and the Bayesian error estimator (solid
line) in a discrete model with b = 16 bins, prior probability c = 0.5,
n = 30 training points, and an average true error of 0.25.

of the test sample. Both bounds still hold if we remove
the conditioning, and in this way they become compa-
rable. Since 1/

√
4n ≤ 1/

√
4m, under a Bayesian model

not only does using the full sample to train the classifier
result in a lower true error, but we expect to achieve bet-
ter RMS performance using training-data error estimation
than we would by holding out the entire sample for error
estimation. This is a testament to the power of modeling.

Optimal classification
Since prior knowledge is required to obtain a good
error estimate in small-sample settings, an obvious course
of action would be to utilize that knowledge for clas-
sifier design [29,32]. Whereas ordinary Bayes classi-
fiers minimize the misclassification probability when the
underlying distributions are known, optimal Bayesian
classification trains a classifier from data assuming the
feature-label distribution is contained in a family param-
eterized by θ ∈ � with some assumed prior density
over the states. Formally, we define an optimal Bayesian
classifier, ψOBC, as any classifier satisfying

Eπ∗ [ε(ψOBC, θ)] ≤ Eπ∗ [ε(ψ , θ)] (9)

for all ψ ∈ C, where C is an arbitrary family of classi-
fiers. Under the Bayesian framework, this is equivalent to
minimizing the probability of error as follows:

P (ψn (X) �= Y |Sn) = Eπ∗ [P (ψn (X) �= Y |θ , Sn)]
= Eπ∗ [ε(ψn, θ)]
= ε̂ (ψn, Sn) . (10)

An optimal Bayesian classifier can be found by brute
force using the closed form solutions for the expected
true error (the Bayesian error estimator), when available.
However, if C is the set of all classifiers (with measurable
decision regions), then an optimal Bayesian classifier can
be found analogously to Bayes classification for a fixed
distribution using the effective class-conditional densi-
ties. To wit, we can realize an optimal solution without
explicitly finding the error for every classifier because the
solution can be found pointwise. Specifically, an optimal
Bayesian classifier, ψOBC, satisfying (9) for all ψ ∈ C,
the set of all classifiers with measurable decision regions,
exists and is given pointwise by [29]

ψOBC (x) =
{
0 if Eπ∗ [ c] f (x|0) ≥ (1 − Eπ∗ [ c] )f (x|1) ,
1 otherwise.

(11)

If Eπ∗ [ c]= 0, then this optimal Bayesian classifier is a
constant and always assigns class 1, and if Eπ∗ [ c] = 1 it
always assigns class 0. Hence, we will typically assume that
0 < Eπ∗ [ c]< 1.
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Essentially, the optimal thing to do is to find the Bayes
classifier using f (x|y) as the true class-conditional distri-
butions. This is like a plug-in rule, only f (x|y) is not nec-
essarily in the family of distributions { fθy(x|y)}, but some
other kind of density that happens to result in the optimal
classifier. We find the optimal Bayesian classifier without
explicitly evaluating the expected true error, Eπ∗ [ε(ψ , θ)],
for every possible classifier ψ . With regards to both opti-
mal Bayesian classification and Bayesian MMSE error
estimation, f (x|y) contains all of the necessary informa-
tion in the model about the class-conditional distributions
and we do not have to deal with the uncertainty class
or priors directly. Upon defining a model, we find f (x|y)
(which depends on the sample because it depends on
π∗) and then the whole problem is solved by treating
f (x|y) as the true distribution: optimal classification, the
error estimate of the optimal classifier, and the optimal
error estimate for arbitrary classifiers. That being said,
there is no short-cut to finding the sample-conditioned
MSE via the effective density; indeed, there is no notion
of variance in the true error of a fixed classifier under
the effective class-conditional densities. Moreover, the
approach of using the effective class-conditional densi-
ties finds an optimal Bayesian classifier over all possible
classifiers. On the other hand, there may be advan-
tages to restricting the space of classifiers, for example,
in a Gaussian model one may prefer linear classifiers
where closed-form Bayesian error estimators have been
found [33].
We will present a Bayesian MMSE classifier for the

discrete model, which has already been solved. More
generally, what we are proposing is not just a few new
classifiers, but a new paradigm in classifier design focused
on optimization over a concretemathematical framework.
Furthermore, this work ties Bayesian modeling and the
Bayesian error estimator together with the old problem of
optimal robust filtering; indeed, in the absence of obser-
vations, the optimal Bayesian classifier reduces to the
Bayesian robust optimal classifier [32,34].

Optimal discrete classification
To illustrate concepts in optimal Bayesian classification,
we consider discrete classification, in which the sample
space is discrete with b bins. We let pi and qi be the
class-conditional probabilities in bin i ∈ {1, . . . , b} for
class 0 and 1, respectively, and we define Uj and Vj to
be the number of sample points observed in bin j ∈
{1, . . . , b} from class 0 and 1, respectively. The class sizes
are given by n0 = ∑b

i=1Ui and n1 = ∑b
i=1 Vi. A

general discrete classifier assigns each bin to a class, so
ψn : {1, . . . , b} → {0, 1}.
The discrete Bayesian model defines θ0 = [ p1, . . . , pb−1]

and θ1 = [ q1, . . . , qb−1]. The last bin probabilities are not
needed since pb = 1 − ∑b−1

i=1 pi and qb = 1 − ∑b−1
i=1 qi.

The parameter space of θ0 is defined to be the set of a valid
bin probabilities, e.g., [ p1, . . . , pb−1]∈ �0 if and only if
0 ≤ pi ≤ 1 for i ∈ {1, . . . , b − 1} and ∑b−1

i=1 pi ≤ 1. The
parameter space �1 is defined similarly. With the para-
metric model established, we define conjugate Dirichlet
priors

π(θ0) ∝
b∏

i=1
pα0

i −1
i and π(θ1) ∝

b∏
i=1

qα1
i −1

i . (12)

For proper priors, the hyperparameters, α
y
i for i ∈

{1, . . . , b} and y ∈ {0, 1}, must be positive, and for uniform
priors α

y
i = 1 for all i and y. In this setting, the posteriors

are again Dirichlet, and when normalized they are given
by

π∗(θ0) =


(
n0 + ∑b

i=1 α0
i

)
∏b

k=1 
(
Uk + α0

k
) b∏
i=1

pUi+α0
i −1

i , (13)

π∗(θ1) =


(
n1 + ∑b

i=1 α1
i

)
∏b

k=1 
(
Vk + α1

k
) b∏

i=1
qVi+α1

i −1
i , (14)

where  is the Gamma function.
In the discrete model, for j ∈ {1, . . . , b} the effective

class-conditional densities can be shown to be equal to

f
(
j|0) = Uj + α0

j

n0 + ∑b
i=1 α0

i
and f

(
j|1) = Vj + α1

j

n1 + ∑b
i=1 α1

i
.

(15)

f
(
j|0) and f

(
j|1) may be viewed as effective bin probabil-

ities for each class after combining prior knowledge and
observed data. Hence, from (8), the Bayesian MMSE error
estimator for an arbitrary classifier ψn is

ε̂ =
b∑

j=1
Eπ∗ [ c]

Uj + α0
j

n0 + ∑b
i=1 α0

i
Iψn(j)=1

+ (1 − Eπ∗ [ c] )
Vj + α1

j

n1 + ∑b
i=1 α1

i
Iψn(j)=0,

(16)

where IE is an indicator function equal to one if E is
true and zero otherwise. Exactly the same expression was
derived using a brute-force approach in [27]. The optimal
Bayesian classifier may now be found directly using (11):

ψOBC(j)=
⎧⎨⎩ 1if Eπ∗ [c]

Uj+α0
j

n0+∑b
i=1 α0

i
<(1−Eπ∗ [c])

Vj+α1
j

n1+∑b
i=1 α1

i
,

0 otherwise.
(17)

The optimal Bayesian classifier minimizes the Bayesian
error estimator by minimizing each term in the sum (16).
This is achieved by assigning ψOBC(j) the class with
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the smaller constant scaling the indicator function. The
expected error of the optimal classifier is

ε̂OBC =
b∑

j=1
min

{
Eπ∗ [ c]

Uj + α0
j

n0 + ∑b
i=1 α0

i
,

(1 − Eπ∗ [ c] )
Vj + α1

j

n1 + ∑b
i=1 α1

i

}
.

(18)

In the special case where we have uniform c and uniform
priors for the bin probabilities (αy

i = 1 for all i and y), the
Bayesian MMSE error estimate is

ε̂ =
b∑

j=1

n0 + 1
n + 2

Uj + 1
n0 + b

Iψn(j)=1 + n1 + 1
n + 2

Vj + 1
n1 + b

Iψn(j)=0,

(19)

the optimal Bayesian classifier is

ψOBC(j) =
{
1 if n0+1

n0+b
(
Uj + 1

)
< n1+1

n1+b
(
Vj + 1

)
,

0 otherwise,
(20)

and the expected error of the optimal classifier is

ε̂OBC =
b∑

j=1
min

{
n0 + 1
n + 2

Uj + 1
n0 + b

,
n1 + 1
n + 2

Vj + 1
n1 + b

}
.

(21)

Hence, under uniform priors, when the total number
of samples observed in each class is the same (n0 = n1),
the optimal Bayesian classifier is equivalent to the classi-
cal discrete histogram rule, which assigns a class to each
bin by a majority vote: ψDHR(j) = 1 if Uj < Vj and
ψDHR(j) = 0 if Uj ≥ Vj; otherwise, the discrete histogram
rule is not necessarily optimal within an arbitrary Bayesian
framework.
We take a moment to compare optimal Bayesian clas-

sification over an uncertainty class of distributions with
Bayes classification for a fixed feature-label distribution.
With fixed class-0 probability c and bin probabilities pi
and qi, the true error of an arbitrary classifier, ψ , is given
by

ε =
b∑

j=1
cpjIψ(j)=1 + (1 − c)qjIψ(j)=0. (22)

Note a similarity to (16) and (19). The Bayes classifier is
given byψBayes(j) = 1 if cpj < (1−c)qj and zero otherwise,

corresponding to (17) and (20). Finally, the Bayes error is
given by

εBayes =
b∑

j=1
min{cpj, (1 − c)qj}, (23)

corresponding to (18) and (21). Throughout, c corre-
sponds to Eπ∗ [ c], pj corresponds to the effective bin prob-
ability f (j|0) = (Uj + α0

j )/(n0 + ∑b
i=1 α0

i ) and similarly qj
corresponds to the effective bin probability f (j|1). In this
case, the effective density is a member of our uncertainty
class (which contains all possible discrete feature-label
distributions), so that the optimal thing to do is sim-
ply plug the effective parameters in the fixed-distribution
problem.
That being said, the effective density is not always a

member of our uncertainty class. Consider an example
with D = 2 features, an uncertainty class of Gaussian
class-conditional distributions with independent arbitrary
covariances, and a proper posterior with fixed class-0
probability c = 0.5 (hyperparameters are provided in
[32]). We consider three classifiers. First is a plug-in clas-
sifier, which is the Bayes classifier corresponding to the
posterior expected parameters, c = 0.5, μ0 = [ 0, 0, . . . , 0],
μ1 = [ 1, 1, . . . , 1], and �0 = �1 = ID. Since the expected
covariances are homoscedastic, this classifier is linear.
The second is a state-constrained optimal Bayesian clas-
sifier, ψSCOBC, in which we search for a state with corre-
sponding Bayes classifier having smallest expected error
over the uncertainty class [34]. Since the Bayes classi-
fier for any particular state in the uncertainty class is
quadratic, this classifier is quadratic. Finally, we have the
optimal Bayesian classifier, which has been solved analyt-
ically in [29], although details are omitted here. In this
case, the effective densities are not Gaussian but multi-
variate student’s t distributions, resulting in an optimal
Bayesian classifier having a polynomial decision bound-
ary that is higher than quadratic order. Figure 4 shows
ψplug−in (red), ψSCOBC (black) and ψOBC (green). Level
curves for the class-conditional distributions correspond-
ing to the expected parameters used in ψplug−in are shown
in red dashed lines, and level curves for the distribu-
tions in the state corresponding to ψSCOBC are shown
in black dashed lines. These were found by setting the
Mahalanobis distance to 1. Each classifier is quite distinct,
and in particular, the optimal Bayesian classifier is non-
quadratic even though all class-conditional distributions
in the uncertainty class are Gaussian.
To demonstrate the performance advantage of optimal

Bayesian classification via a simulated experiment, we
return to the discrete classification problem. Let c and
the bin probabilities be generated randomly according to
uniform prior distributions. For each fixed feature-label
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Figure 4 Classifiers for an independent arbitrary covariance
Gaussian model. Classifiers for an independent arbitrary covariance
Gaussian model with D = 2 features and proper posteriors. Whereas
the optimal Bayesian classifier (in green) is polynomial with expected
true error 0.2007, the state-constrained optimal Bayesian classifier (in
black) is quadratic with expected true error 0.2061 and the plug-in
classifier (in red) is linear with expected true error 0.2078. These
expected true errors are averaged over the posterior on the
uncertainty class of states.

distribution, a binomial(n, c) experiment is used to deter-
mine the number of sample points in class 0 and the bin
for each point is drawn according to the bin probabilities
corresponding to its class, thus generating a non-stratified
random sample of size n. Both the histogram rule and
the new optimal Bayesian classifier from (20), assuming
correct priors, are trained from the sample. The true error
for each classifier is also calculated exactly via (22) . This
is repeated 100,000 times to obtain the average true error
for each classification rule, presented in Figure 5 for b = 2,
4 and 8 bins. Observe that the average performance of
optimal Bayesian classification is indeed superior to that
of the discrete histogram rule, especially for larger bin

sizes. However, note that optimal Bayesian classifiers are
not guaranteed to be optimal for a specific distribution
(the optimal classifier is the Bayes classifier), but only opti-
mal when averaged over all distributions in the assumed
Bayesian framework.

Conclusions
Scientific knowledge is possible for small-sample
classification.
Given the importance of classification throughout sci-

ence and the crucial epistemological role played by error
estimation, it is remarkable that only one paper providing
analytic results for moments of common error estima-
tors was published between 1977 and 2005, and that up
until 2005, there were no papers providing representa-
tion of the joint distribution or of the second-order mixed
moments. Today, we are paying the price for this dearth
of activity as we are now presented with very large fea-
ture sets and small samples across different disciplines, in
particular, in high-throughput biology, where the advance
of medical science is being hamstrung by a lack of basic
knowledge regarding pattern recognition. Moreover, in
spite of this obvious crippling lack of knowledge, there is
only a minuscule effort to rectify the situation, whereas
billions of dollars are wasted on gathering an untold quan-
tity of data that is useless absent the requisite statistical
knowledge to make it useful.
No doubt this unfortunate situation would make for a

good sociological study. But that is not our field of exper-
tise. Nonetheless, we will put forth a comment made by
Thomas Kailath in 1974, about the time that fundamen-
tal research in error estimation for small-sample classi-
fication came to a halt. He writes, “It was the peculiar
atmosphere of the sixties, with its catchwords of ‘building
research competence,’ ‘training more scientists,’ etc., that
supported the uncritical growth of a literature in which
quantity and formal novelty were often prized over sig-
nificance and attention to scholarship. There was little
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Figure 5 Average true errors for discrete classification. Average true errors on discrete distributions from known priors with uniform c and bin
probabilities versus sample size. (a) b = 2; (b) b = 4; (c) b = 8.
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concern for fitting new results into the body of old ones;
it was important to have ‘new’ results!” [35]. Although
Kailath’s observation was aimed at signal processing, the
“peculiar atmosphere” of which he speaks is not limited
to any particular discipline; rather, he had perceived an
“uncritical growth of a literature” lacking “attention to
scholarship.” One can only wonder what Prof. Kailath’s
thoughts are today when he surveys a research landscape
that produces orders of magnitude more papers but pro-
duces less knowledge than that produced by the relative
handful of scientists, statisticians, and engineers a half
century ago. For those who would question this latter
observation in pattern recognition, we suggest a study of
the early papers by such pioneers as Theodore Anderson,
Albert Bowker, and Rosedith Sitgreaves.
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