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Abstract: For science, theoretical or applied, to significantly advance, researchers must use the most appropriate mathematical 
methods. A century and a half elapsed between Newton’s development of the calculus and Laplace’s development of celestial mechanics. 
One cannot imagine the latter without the former. Today, more than three-quarters of a century has elapsed since the birth of stochastic 
systems theory. This article provides a perspective on the utilization of systems theory as the proper vehicle for the development of 
systems biology and its application to complex regulatory diseases such as cancer.
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Article
Isaac Newton published his Principia in 1646; 
Pierre-Simon Laplace published the first volume 
of his Celestial Mechanics 150 years later in 1796. 
Laplace’s system depends on the calculus of Newton 
and its subsequent developments over a century and a 
half. Laplace did not ignore the well-developed math-
ematics of his day and try to develop his mechanics 
without it; rather, he used the relevant available 
tools.

Today we stand on the huge development of sto-
chastic processes and systems theory over more than 
three quarters of a century. Ignoring systems theory in 
the development of systems biology would be analo-
gous to Laplace trying to develop celestial mechanics 
with elementary algebra or Einstein trying to develop 
the general theory of relativity using Euclidean 
geometry. Whereas Laplace utilized the calculus 
because it was a suitable medium for the velocity, 
acceleration, and mass of classical mechanics, Einstein 
utilized Riemannian geometry because it was a suit-
able medium for relativistic velocity, acceleration, 
and mass. In both cases, formal conceptualization of 
the theory depended upon the availability of suitable 
mathematics.

Reflecting on his investigations into systems biol-
ogy, in 1935 Conrad Waddington wrote, “To say that 
an animal is an organism means in fact two things: 
firstly, that it is a system made up of separate parts, 
and secondly, that in order to describe fully how any 
one part works one has to refer either to the whole 
system or to the other parts.”1 This was around the 
time that Andrey Kolmogorov was formulating a 
rigorous theory of continuous time random processes. 
Norbert Wiener was part of the rapid development of 
that theory and its applications in the 1930s in the 
United States, the Soviet Union, France, and England. 
In 1945, he and his physiologist collaborator, Arturo 
Rosenblueth, published a seminal paper in systems 
biology, “The mathematical formation of the problem 
of conduction of impulses in a network of connected 
excitable elements, specifically in cardiac muscle.”2 
It is fitting that Wiener, the father of modern systems 
theory in engineering, would be the first to recognize 
systems theory as the natural setting for characteriz-
ing biological systems. In 1949 he declared, “Many 
perhaps do not realize that the present age is ready 
for a significant turn in the development toward far 

greater heights than we have ever anticipated. The 
point of departure may well be the recasting and uni-
fying of the theories of control and communication in 
the machine and in the animal on a statistical basis.”3

Much biological research over the past 50 years has 
focused on discovering sets of components required 
to execute the many processes necessary for cell sur-
vival and the collaboration necessary to form func-
tioning organisms. Currently, we can identify what 
is likely a large percentage of the genes in complex 
organisms. For a portion of those, we have knowl-
edge of some capabilities of their protein products. 
Our understanding of how gene products collaborate 
to carry out cellular processes varies considerably. 
In the areas of metabolism and energetics, knowl-
edge of how the most basic building blocks of the 
cell are built from simple precursors and the ways in 
which energy is obtained to carry out cellular opera-
tions is quite detailed. Knowledge in this sphere is 
fairly certain due to the high degree of linearity of the 
operations constituting the processes. In metabolic 
pathways, simple substrates progress through a series 
of ordered, sequential chemical transformations, each 
mediated by a specific enzyme. These processes can 
be readily studied in a piecemeal fashion and the 
pieces assembled into a coherent whole, since each 
step operates on only a single or very limited set of 
substrates. This level of simplicity is not evident in 
the complex processes that constitute the wide variety 
of cellular activities that allow cells to develop, dif-
ferentiate, and assemble into the many distinct types 
whose functions are required to support and maintain 
an organism’s activities. Regulation of these activities 
can have many independent inputs, each capable of 
exerting control, and a number of parallel processes, 
each capable of carrying out a control process yield-
ing the same functional result. These may be config-
ured with feedback loops that can increase its output 
signal if the process experiences interference.

Many human diseases arise when there are changes 
in either the amount or the structure of a specific gene 
product in a particular cell type. Treatments of dis-
eases arising in the metabolic domain are usually 
much more successful than those in other cellular 
function domains. A listing of inherited metabolic 
diseases from the Canadian Ministry of Health lists 
85 different metabolic diseases for which treatments 
are readily available. Treatments are either essential 
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metabolites for those not capable of synthesizing 
them or foods that do not contain metabolic precur-
sors that are toxic for those who cannot metabolize 
them. Whole genome sequencing of persons with 
diseases for which a diagnosis had not been possible 
has detected alterations in genes identifiable as hav-
ing metabolic functions, which in some cases has 
allowed treatment with supplements that correct the 
metabolic deficiencies resulting from the altered gene. 
The very direct route from observation of an altered 
component of a metabolic process to provision of a 
metabolite downstream of the non-functional enzyme 
is a result of highly certain knowledge of the roles 
of the process components and a highly deterministic 
regulatory regime.

On the other hand, attempts to identify ways of 
altering cellular processes to alleviate the destruc-
tion induced by key genes influencing neurologi-
cal functions,4 or pulmonary function, cystic fibrosis 
transmembrane conductance regulator,5 have been 
unsuccessful. Successful reversal of Huntington’s 
disease in mouse models has recently been achieved 
by two groups using different strategies to reduce the 
amount of mutant Huntingtin protein in the neural cells, 
thereby avoiding intervention in the diverse processes 
disturbed by the protein.6,7 With cystic fibrosis, prog-
ress has been made, not by interventions, but by using 
a drug cocktail capable of altering the conformation 
of one of the mutant forms of the cystic fibrosis gene 
so that it regains its normal functionality.8 One study 
of Huntington’s disease tested the effect of increased 
expression or partial loss of function of a subset of 60 
genes drawn from studies that identified 234 proteins 
that physically interacted with mutant Huntingtin pro-
tein to determine whether changes in the behavior of 
these interacting  genes would alter the of neurotox-
icity induced by mutant Huntingtin.9 Many modifiers 
involved in a wide variety of cellular processes were 
found that produced statistically significant, but modest 
toxicity modification. This is a striking example of the 
hazard that uncertainty poses to a researcher attempting 
to develop an intervention strategy. The more broadly 
a gene capable of inducing a pathological cellular state 
perturbs the normal cellular processes, the harder it is 
to discover a successful strategy that acts on any gene 
save the pathological gene itself.

Efforts to control pathological cell processes 
by interventions at fixed points in specific cellular 

processes have been enthusiastically applied in 
attempts to develop oncology drugs over the last 
two decades, the result being a very limited number 
of drugs producing high curative rates. The major-
ity of drugs produce temporary reductions in tumor 
abundance over periods of one to six months, followed 
by active tumor proliferation. This was first thought to 
result from misalignment of the drug with the tumor’s 
molecular characteristics, but it was later observed 
that even a frequently used drug such as gefitinb does 
not provide a significant increase in overall survival, 
even for patients having the most favorable molecu-
lar characteristics for response.10 The failure of the 
drug vemurafinib, which targets a mutated form of 
the BRAF kinase, to produce a durable response in 
melanoma in spite of a very strong initial response of 
melanoma tumors to the drug has launched a wide-
spread investigation into how these tumors overcome 
the drug’s interventive effects.11–15 As witnessed for 
other targets, such as members of the EGFR family 
of receptor tyrosine kinases,16 a wide variety of resis-
tance mechanisms can be deployed by cancer cells. 
These include induction of alternate processes that 
provide overlapping activation of many of the same 
processes that the target normally activates, out-
growth of either newly acquired mutations or a minor 
population of tumor cells already bearing a mutated 
component that activates the processes activated by 
the target, the presence of feedback loops that pro-
vide target activity levels higher than the targeting 
drug can suppress, induction of a resistance produc-
ing alternate process by RTK ligands produced by 
stromal cells in the tumor, and other mechanisms. 
Reviewing these complexities, Yosef Yarden, a dis-
tinguished researcher with considerable experience in 
the biology of the EGFR family, argues that progress 
in developing effective treatment strategies requires 
that the knowledge of the various networks involved 
in and activated by this gene family needs to be 
assembled into a system view of the overall process, 
to allow knowledge of the various mutations and 
gene product levels in a particular patient to be used 
to specify what single or multiple drug perturbations 
will provide an effective therapy.16

In sum, biological modeling, and the translational 
medicine consequent to it, must handle the parallelism 
and redundancy required for system efficiency and 
survivability. This problem has been faced before by 
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engineers and scientists in complex system analysis, 
albeit, not as complex as biological systems. Only via 
interwoven regulation can a system be sufficiently 
fault tolerant to survive in a rapidly changing inter-
active environment. We confront the modeling and 
control of systems capable of autonomous reconfig-
uration. This problem has been faced by engineers 
and scientists in complex system analysis since the 
1930s.

Reflecting on the development of control systems to 
regulate autonomously reconfigurable systems, in the 
1960s, stochastic control theorist Vladimir Pugachev 
wrote, “The simplest systems of this type, which 
incorporate elements for automatically adjusting par-
ticular parameters according to an analysis of input 
and output data, are called self-adjusting systems. 
Complex systems of this kind are capable of adapting 
themselves completely at each instant to the results 
of their analysis of external conditions and previous 
performance. These are said to be self-organizing. It 
is quite clear that no theory of error under average 
operating conditions is adequate for the design of 
self-adjusting and self-organizing systems. A special 
theory is required which will solve the complex prob-
lems involved in processing the input data and utiliz-
ing it to best advantage in any particular case. Both 
problems can be tackled by the modern theory of opti-
mal systems.”17 If we define biology as the “study of 
organisms, physical systems capable of retaining and 
utilizing information to execute processes that utilize 
available energy to organize matter for facilitation of 
their own persistence and reproduction”,18 then biol-
ogy clearly falls within the purview of Pugachev’s 
characterization.

Today, we possess much greater knowledge of 
systems theory and orders of magnitude greater com-
putational power than were available to Pugachev’s 
generation, but to take advantage of this greater 
knowledge and power it is first necessary to over-
come a challenging problem: how to embed bio-
logical knowledge in stochastic systems theory. It 
would be foolhardy to underestimate the difficulty 
of the problem. Indeed, consider the decades it took 
to develop applications in electrical, mechanical, and 
computer engineering. Biological systems present a 
higher hurdle. Nonetheless, when one considers the 
control necessary to land a man on the moon, less than 
40 years after Kolmogorov’s fundamental paper, one 

should not face the development of biological sys-
tems theory with trepidation, especially since we have 
much more knowledge of nonlinear systems than was 
possessed in the 1960s and our technical apparatus 
dwarfs what was available then. But to achieve the 
goal, one must begin the trek. It begins with biology 
becoming a science of stochastic systems.

Work over the last decade on the external control of 
gene regulatory networks modeled as Markov chains 
provides a peek into a future biomedicine embedded 
in stochastic systems theory. Model-based design 
of intervention strategies using stochastic control 
was first applied to gene regulatory networks over 
a finite horizon (finite time window).19 Following 
some further early work with finite-horizon control, 
attention shifted to optimal infinite-horizon control, 
the intent being to drive the long-run behavior of the 
network towards desirable phenotypes.20 Since then 
attention has shifted to dealing with practical issues.

The size and complexity of gene regulatory net-
works creates what may be the two most challenging 
problems for stochastic control. The first is com-
putational complexity. Policy design algorithms, 
whether they involve dynamic programming or 
matrix manipulations, are quickly overwhelmed 
by state spaces arising from even a small gene 
set. One way to address computational limitations 
is to use greedy control policies that forego full 
optimization;21,22 however, these are quickly over-
come by the exponential growth in the state space 
relative to the number of genes. Another approach is 
network reduction, where a compression algorithm 
is used to delete genes or network states that, based 
on some measure, are not important relative to the 
control objective.23–25

A second challenging issue is model uncertainty. 
Owing to biological complexity and experimental lim-
itations, model uncertainty is virtually unavoidable. 
Control policies need to be robust with respect to 
uncertain modeling assumptions.26–29 Specifically, 
rather than design a control policy that is optimal for 
a particular network, design one that is optimal (in 
some sense) across an uncertainty class of networks. 
Moreover, rather than depend on data alone, apply 
prior biological knowledge to constrain the uncertainty 
class. This presumes a method of taking biological 
knowledge and data, say, in the form of pathways and 
steady-state expression data, and producing networks 
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consistent with both the knowledge and the data.30,31 
As with any scientific experiment, it is important to 
follow an experimental protocol suitable to the goal 
of designing of a stochastic control policy, not merely 
perusing haphazard data.18

Other practical issues abound, such as limiting 
drug dosage,32 allowing time for recovery following 
treatment,33,34 and constraining optimality so as not to 
induce phenotypes that, while not known to be patho-
logical from the standpoint of the disease of interest, 
may nonetheless be undesirable.35 As medicine joins 
other modern engineering disciplines and ad hoc 
operational regimes are replaced by optimized pro-
cedures based on stochastic systems theory,36 a host 
of other practical issues will have to be modeled 
and mathematically addressed. Beyond the theory, 
dynamic experimental protocols must be developed 
for both model design and validation, and the con-
comitant statistical issues addressed.

Altogether this will be a monumental effort requir-
ing a transformation of biomedical thinking almost as 
radical as that from medieval science to Newtonian 
mechanics. While it would certainly be naive to think 
that this transformation will be easy, it would be 
equally naïve to think that one could build a science 
of biological systems and translate that science into 
medical treatment of extraordinarily complex regula-
tory diseases such as cancer using sophomore math-
ematics augmented with powerful search engines.
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