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[What approaches have been developed
for addressing the issue of intervention?]

I
n recent years, there has been a considerable amount of
interest in the area of genomic signal processing, which is
the engineering discipline that studies the processing of
genomic signals. Since regulatory decisions within the cell
utilize numerous inputs, analytical tools are necessary to

model the multivariate influences on decision-making produced
by complex genetic networks. Signal processing approaches
such as detection, prediction and classification have been used
in the recent past to construct genetic regulatory networks
capable of modeling genetic behavior. To accommodate the
large amount of uncertainty associated with this kind of model-
ing, many of the networks proposed are probabilistic. One of the
objectives of network modeling is to use the network to design
different intervention approaches for affecting the time evolu-
tion of the gene activity profile of the network. More specifically,
one is interested in intervening to help the network avoid unde-
sirable states such as those associated with a disease.

INTRODUCTION
From a translational perspective, the ultimate objective of
genetic regulatory network modeling is to use the network to

design different approaches for affecting network dynamics in
such a way as to avoid undesirable phenotypes, for instance,
cancer. In this article we present a tutorial survey of some of the
recent results on intervention in the context of probabilistic
gene regulatory networks, which, owing to their original binary
formulation and their usual application using binary and ternary
gene-expression quantization, are generically called probabilis-
tic Boolean networks (PBNs) [1]. These are essentially proba-
bilistic generalizations of the standard Boolean networks (BNs)
introduced by Kauffman [2]–[4] that allow the incorporation of
uncertainty into the intergene relationships. Given a PBN, the
transition from one state to the next takes place in accordance
with certain transition probabilities and their dynamics, and
hence intervention can be studied in the context of homoge-
neous Markov chains [5] with finite state spaces.

A major goal of functional genomics is to screen for genes
that determine specific cellular phenotypes (disease) and model
their activity in such a way that normal and abnormal behavior
can be differentiated. The pragmatic manifestation of this goal is
the development of therapies based on the disruption or mitiga-
tion of aberrant gene function contributing to the pathology of



a disease. Mitigation would be accomplished by the use of drugs
to act on the gene products. Engineering therapeutic tools
involves synthesizing nonlinear dynamical networks, analyzing
these networks to characterize gene regulation, and developing
intervention strategies to modify dynamical behavior. For
instance, changes in network connectivity or functional rela-
tionships among the genes in a network, via mutations or re-
arrangements, can lead to steady-state behavior associated with
tumorigenesis, and this is likely to lead to a cancerous pheno-
type unless corrective therapeutic intervention is applied.

To date, intervention studies have used three different
approaches: i) resetting the state of the PBN, as necessary, to a
more desirable initial state and letting the network evolve
from there [6], ii) changing the steady-state (long-run) behav-
ior of the network by minimally altering its rule-based struc-
ture [7], and iii) manipulating external (control) variables that
alter the transition probabilities of the network and can, there-
fore, be used to desirably affect its dynamic evolution [8]. The
control-theoretic approach has subsequently been extended.
First, the optimal intervention algorithm has been modified to
accommodate the case where the entire state vector, or gene
activity profile (GAP) as it is known, is not available for meas-
urement [9]. Second, whereas the original control-theoretic
approach has been developed in the framework of instanta-
neously random PBNs, the intervention results have been
extended to context-sensitive PBNs (terminology to be defined
shortly) [10]. Third, in [11], control algorithms have been
developed for a family of genetic regulatory networks as
opposed to a single network. Finally, in [12], the earlier finite
horizon results have been extended to the infinite horizon case
in an effort to alter the steady-state behavior of the genetic
regulatory network.

We will provide a tutorial exposition of the recent results in
[11] and [12]. A similar exposition of the earlier intervention
strategies has been provided in [13].

REVIEW OF PROBABILISTIC BNS
Our review focuses on aspects critical to intervention and we
refer to the literature for more detailed accounts [1], [14], [15].
A BN consists of a set of nodes (genes) in which each gene can
take on one of two binary values, 0 or 1 [2], [4]. Given n genes,
the activity level [16] of gene i at time step k is denoted by
xi (k), where xi(k) = 0 indicates that gene i is not expressed
and xi(k) = 1 indicates that it is expressed. The overall expres-
sion levels of all the genes in the network at time step k is given
by the state (row) vector x(k) = [x1(k), x2(k), . . . , xn(k)], also
called the GAP of the network at time k. Gene i evolves from
time k to k + 1 according to the Boolean function
fi(x1(k), x2(k), . . . , xn(k)). Usually the value of fi does not
depend on the entire set {x1, x2, . . . , xn} of n gene values but
only on a finite subset Pi of it. This set Pi is called the predictor
set for the ith gene. Specifying the truth table for the functions
f1, f2, . . . , fn along with the associated predictor sets P 1 ,
P2, . . . , Pn supplies all the information necessary to determine
the time evolution of the states of the BN.

The binary n-digit state vector x(k) can be mapped to positive
integers z(k) so that as x(k) ranges from 00 · · · 0 to 11 · · · 1,z(k)
goes from 1 to 2n. Here we employ the decimal representation
z(k) and the set S = {1, 2, . . . , 2n} constitutes the state space
for the BN. Furthermore, each z(k) can be uniquely represented
by a basis vector w(k) ∈ {0, 1}2n

, where w(k) = ez(k) , e.g., if
z(k) = 1, then w(k) = [1, 0, 0, . . ...]. Then, as discussed in [1],
the evolution of the vector w(k) proceeds according to the dif-
ference equation 

w(k + 1) = w(k)A (1)

where A is a 2n × 2n matrix having only one nonzero entry
(equal to one) in each row.

A  PBN consists of a finite collection of BNs over a fixed set of
genes, where each BN is defined by a fixed network function. At
any given moment of discrete time there is a probability p of
randomly switching the state of the PBN, so that each con-
stituent BN is a BN with random perturbation. Moreover, at
each moment of time there is a probability q of switching to a
different constituent BN, where, given a switch, each BN com-
posing the network has a probability of being selected. If q = 1,
the PBN is said to be instantaneously random, the idea being to
model uncertainty in model selection; if q < 1, it is said to be
context-sensitive, the idea being to model the situation where
the model is affected by latent variables outside the model.

In the case of PBNs, we have a stochastic counterpart of (1)
given by

w(k + 1) = w(k)A (2)

where w(k) denotes the probability distribution vector at time k,
i.e., wi(k) = Pr{z(k) = i} and A denotes the probability transi-
tion matrix.

Several approaches have been used for the derivation of the
probability transition matrix (A) for PBNs. One of the approach-
es for discovering multivariate relationships between genes is
using the CoD (coefficient of determination) technique
[17]–[19]. The CoD procedure has been used in [8] and [9] to
generate instantaneously random PBNs from actual gene
expression data. In [10], a Bayesian connectivity-based approach
[20] has been used to generate possible BNs for the construction
of a context-sensitive PBN. The transition probabilities of the
context-sensitive PBN were derived based on the structure and
Bayesian scores of the individual BNs. The detailed derivation of
the transition probabilities is available in [10]. Another approach
to construct BNs from gene expression data is based on steady-
state considerations and prescribed attractor structure [21].
This method has been used in [11] and [12] for the construction
of BNs and subsequently PBNs. 

As with the majority of the literature, we have focused on
binary quantization; nevertheless, one should recognize that
most of the theory and application carry over to any finite
quantization in a fairly obvious fashion—that is, to proba-
bilistic gene regulatory networks (PGRN). The terminology
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probabilistic BN is usually applied to PGRNs in general, under
the supposition that it is the logical character of the networks
that is at issue. 

EXTERNAL INTERVENTION BASED 
ON OPTIMAL CONTROL THEORY
PBNs can be used for studying the dynamic behavior of gene
regulatory networks. Once a probability distribution vector has
been specified for the initial state, the probability distribution
vector evolves according to (2). From this perspective PBNs are
descriptive in nature. There is no mechanism for controlling the
evolution of the probability distribution vector. For treatment or
intervention purposes, we are interested in working with PBNs
in a prescriptive fashion, where the transition probabilities of
the associated Markov chain depend on certain auxiliary vari-
ables, whose values can be chosen to make the probability distri-
bution vector evolve in some desirable manner.

The use of such auxiliary variables makes sense from a bio-
logical perspective. For instance, in the case of diseases like
cancer, auxiliary treatment inputs such as radiation and
chemotherapy may be employed to move the state probability
distribution vector away from one associated with uncon-
trolled cell proliferation or markedly reduced apoptosis. The
auxiliary variables could also include genes that serve as exter-
nal master-regulators for all the genes in the network. To be
consistent with the binary nature of the expression status of
individual genes in a PBN, we will assume that the auxiliary
variables (control inputs) can take on only the binary values 0
or 1. The values of the individual control inputs can be
changed from one time step to another in an effort to make
the network behave in a desirable fashion.

Suppose a PBN has n genes and m control inputs, u1 ,
u2, . . . , um, each of which can take on only the binary values 0
or 1. One can represent the control input status using a decimal
integer v(k) ranging from 1 to 2m, so that U = {1, . . . , 2m} is
the set of possible control actions. As shown in [8], the one-step
evolution of the probability distribution vector in the case of a
PBN containing 2n states with control inputs takes place accord-
ing to the equation 

w(k + 1) = w(k)A(v(k)) (3)

where w(k) is the 2n dimensional state probability distribution
vector and A(v(k)) is the 2n × 2n control-dependent transition
probability matrix. The system in (3) can be equivalently repre-
sented as a stationary discrete-time dynamic system

z(k + 1) = f(z(k), v(k), d(k)), k = 0, 1, . . . ., (4)

where for all k, the state z(k) is an element of S, the control
input v(k) is an element of U, the disturbance d(k) is an element
of a space D and f : S × U × D �→ S. The disturbance d(k) is
manifested in terms of change of network based on the network
transition probability q or change of state due to perturbation
probability p. d(k) is independent of prior disturbances

d(0), d(1) . . . .d(k − 1).We will interchangeably use either rep-
resentation (3) or (4) depending on their suitability for a partic-
ular context or a particular derivation.

Since the transition probability matrix is a function of the
control input v(k), the evolution of the probability distribution
vector of the PBN with control now depends not only on the ini-
tial distribution vector but also on the values of the control
input at different time steps. Intuitively, it appears possible to
make the states of the network evolve in a desirable fashion by
appropriately choosing the control input at each time step. We
next proceed to formalize these ideas.

Suppose that the number of steps over which the control
input is to be applied has been a priori determined to be M and
we are interested in controlling the behavior of the PBN over
the interval k = 0, 1, 2, . . ., M − 1. Suppose at time step k, the
state of the PBN is given by z(k) and the corresponding con-
trol input is v(k). (In the rest of this article, we will be referring
to z(k) as the state of the probabilistic BN since z(k) is equiva-
lent to the actual state x(k).) Then we can define a cost
Ck(z(k), v(k)) as being the cost of applying the control input
v(k) when the state is z(k). The other component of the finite-
horizon cost is the cost associated with the terminal state
z(M). Owing to the probabilistic nature of the evolution, the
terminal state z(M) is a random variable that can possibly take
on any of the values 1, 2, . . ., 2n. We assign higher terminal
costs to the undesirable states. For instance, a state associated
with rapid cell proliferation leading to cancer should be associ-
ated with a high terminal penalty while a state associated with
normal behavior should be assigned a low terminal penalty.
For the purposes of this section, we will assume that the
assignment of terminal penalties has been carried out and we
have at our disposal a terminal penalty CM(z(M)) that is a
function of the terminal state. 

With these definitions, the finite-horizon cost to be mini-
mized is given by

E

[
M−1∑
k=0

Ck(z(k), v(k)) + CM(z(M))|z(0)

]
. (5)

To proceed further, let us assume that at time k the control
input v(k) is a function of the current state z(k), namely, 

v(k) = µk(z(k)) (6)

where µk : {1, 2, . . . ., 2n} → {1, 2, . . . , 2m}. The optimal con-
trol problem can now be stated. Given an initial state z(0), find a
control law π = {µ0, µ1, . . . .., µM−1} that minimizes the cost
functional

J0(z(0)) = E

[
M−1∑
k=0

Ck(z(k), µk(z(k))) + CM(z(M))

]
(7)

subject to the constraint

Pr{z(k + 1) = j|z(k) = i, v(k) = v} = aij(v) (8)

where aij(v) is the ith row, jth column entry of the matrix A(v).
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SOLUTION USING DYNAMIC PROGRAMMING
Optimal control problems of the type described by (7) and (8)
can be solved using the technique of dynamic programming.
This technique, pioneered by Bellman in the 1960s, is based on
the so-called principle of optimality. When an optimal strategy
exists, the principle of optimality asserts: if one searches for an
optimal strategy over a subset of the original number of steps,
then this new optimal strategy will be given by the overall opti-
mal strategy, restricted to the steps being considered. It can be
used to arrive at the dynamic programming [22], [23], [8] solu-
tion to (7) and (8):

JM(zM) =CM(zM) (9)

Jk(zk) =minvk∈U


Ck(zk, vk) +

2n∑
j=1

azk, j(vk) Jk+1( j)


 (10)

for k = 0, 1, . . ., M − 1. (In the rest of this article, we will be
denoting w(k), z(k), v(k), d(k) by wk, zk, vk, dk respectively,
mainly for the purpose of simplifying the notation.) 

Illustrative examples to show optimal control design for
instantaneously random PBNs are available in [8]. In the follow-
ing section, we provide an example of applying dynamic pro-
gramming over finite time steps for a context-sensitive PBN
derived from actual gene expression data.

MELANOMA EXAMPLE
The network chosen as an example of how control might be
applied is one developed from data collected in a study of
metastatic melanoma [24]. In this expression profiling study,
the abundance of messenger RNA for the gene WNT5A was
found to be a highly discriminating difference between cells
with properties typically associated with high metastatic compe-

tence versus those with low metastatic competence. These find-
ings were validated and expanded in a second study [25].
Because it is biologically known that WNT5A ceasing to be down
regulated is strongly predictive of the onset of metastasis, the
control objective for this network is to externally down-
regulate the WNT5A gene.

We consider a seven-gene network with genes WNT5A, pirin,
S100P, RET1, MART1, HADHB, and STC2. We have used the
Bayesian connectivity-based approach of [20] to construct four
highly probable BNs that are used as the constituent BNs in the
PBN, with their selection probabilities based on their Bayesian
scores. The control strategy of this section has been applied to
the designed PBN with pirin chosen as the control gene and
p = q = 0.01. Figure 1 shows the expected cost for a finite hori-
zon problem of length 5 originating from each of the 128 states
(Note that the choice of M = 5 is arbitrary.) The cost of control
is assumed to be 0.5 and the states are assigned a terminal
penalty of 5 if WNT5A is 1 and 0 if WNT5A is 0. Here the choice
of the numbers 0 and 5 is arbitrary but it does reflect our
attempt to capture the intuitive notion that states where
WNT5A equals one are less desirable than those where WNT5A
equals 0. The control objective is to down-regulate the WNT5A
gene. From Figure 1, it is clear that the expected cost with con-
trol is much lower than that without control, which agrees with
our objective.

EXTERNAL INTERVENTION FOR A FAMILY OF BNS
The results of this section are motivated by the fact that most
gene expression data used for PBN design are likely to come
from the phenotype observed at steady-state. For instance, the
gene expression data for cancer genomics studies are usually
obtained from tumor biopsies. Given a data set consisting of

[FIG1] Expected cost for a finite horizon problem of length five originating from the different initial states [10].
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gene-expression measurements, PBN design constitutes an ill-
posed inverse problem that is treated by using a design algorithm
to generate a solution. Inference can be formalized by postulat-
ing criteria that constitute a solution space for the inverse prob-
lem. The criteria come in two forms: (1) the constraint criteria
are composed of restrictions on
the form of the network, and (2)
the operational criteria are
composed of relations that must
be satisfied between the model
and the data. The solution space
consists of all PBNs that satisfy
the two sets of criteria.
Recognizing that PBNs are
composed of BNs, and since it is
difficult to infer the probabilis-
tic structure among the con-
stituent BNs from the steady-state data typically used for design,
a more general view may be taken in which the inverse problem
is restricted to determining a solution space of BNs and then
finding networks in that space [21]. Without a probabilistic
structure between the BNs, we have a family of BNs satisfying
both the constraint and operational criteria. If desired, one can
then go further and construct a PBN by using networks from the
family, or one can simply treat the family as a collection of solu-
tions to the Boolean-network inverse problem.

In [11], we derived a control algorithm that can be applied
to the second situation, i.e., to a family of BNs. This is accom-
plished by minimizing a composite cost function that is a
weighted average cost over the entire family. Ideally, the
weighting for each member of the family at any time point
would be proportional to the instantaneous probability of a
particular network being the governing network. Although
these instantaneous probabilities are not known, we adaptively
estimate them from the available data and the estimate is used
to implement the control algorithm. We next provide a tutorial
presentation of the details.

If a family of BNs is designed whose attractors match the
data, assuming the family is not too small we have the expecta-
tion that the underlying biological phenomena are closely
modeled by at least some of the BNs in the family. In the
absence of perfect knowledge as to which BNs are capable of
better representing the underlying phenomena, we develop a
control policy that optimizes a composite cost function over
the entire family of BNs.

Toward this end, let N be a set of L BNs N1, N2, . . . , NL pos-
sessing identical sets of singleton attractors, all sharing the
same state space S and the same control space U. Associated
with each network is an initial probability of it 
representing the underlying phenomenon. Since this informa-
tion is not available, we will adaptively estimate these probabili-
ties as more transitions are observed. For each network
Nl, l = 1, 2, . . . , L define:

■ al
ij(v) to be the ith row, jth column entry of the matrix

Al(v) of the network Nl ;

■ Cl
k(i, v) to be the cost of applying the control v at the kth

time step in state i in network Nl ;
■ Cl

M(i) to be the terminal cost associated with state i in net-
work Nl.
We define the belief vector πk = [π1

k , π2
k , . . . , πL

k ], where π l
k

is the probability of network Nl

being the underlying network at
the kth time step. πk is the
probability distribution vector
for the family of networks at the
kth time step. Since πk is
unknown, we will make an ini-
tial guess for it and update it as
more information becomes
available. The use of this vector
is inspired by the information
vector in [26].

Suppose i is the current state at step k, π is the current esti-
mate of the belief vector, and upon application of control v we
observe state j at the next time step. Then the new belief vector
is π ′ = T(π, i| j, v), where the transformation T can be obtained
by use of Bayes’ theorem and the theorem of total probability,

π ′ =
[
· · · ,

al
ij(v ) · π l

k∑
s∈N as

ij(v ) · π s
k
, · · ·

]
(11)

We will now make use of this belief vector to set up the optimal
control solution over a family of BNs. Suppose we are given an
initial belief vector π0 and an initial state z0. The initial belief
vector is based on our prior knowledge of the system. It could
be a function of likelihood or Bayesian scores of networks, or it
could be uniform to reflect no prior knowledge. Our objective is
to find controls v0, v1, . . . , vk, . . . , vM−1 to minimize the
expectation of the cost-to-go function over all networks in N .
The cost to go at the kth time step (0 ≤ k < M) is a function
of the current state zk and the updated belief vector πk .
Motivated by (10) for the single PBN case, we define the average
optimal cost-to-go function by

Jk(πk, i ) = min
v∈U

[∑
l∈N

π l
k

{
Cl

k(i, v)

+
∑
j∈S

al
ij(v) Jk+1(T(πk, i| j, v), j)





 (12)

The inner summation is the expectation over all j ∈ S of the
cost to go at the (k + 1)th step in the lth network on observing
j. We then add to it the cost of control at the kth step in the lth
network and average over all the networks in the family. Finally
we take the minimum over all control actions in U to obtain the
optimal policy and the cost to go at the kth step.

Similarly, in view of (9), the terminal cost for a state i is trivial-
ly defined to be the average terminal cost over the entire family:

JM(πM, i) =
∑
l∈N

π l
M.Cl

M(i). (13)
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In the melanoma example of the previous section, terminal
penalties were assigned to states based on the expression
level of a certain key gene, namely WNT5A; however, as dis-
cussed in [27], it may be more reasonable to assign terminal
penalties based on the long-term prospective behavior of the
system in the absence of con-
trol. Using the procedure in
[27], for singleton attractors
the penalty Cl

M is set accord-
ing to the status of the penal-
ty gene(s). A penalty gene is a
gene for which certain expres-
sion statuses are known to be
undesirable, e.g., WNT5A for
the melanoma example. The
attractors are shared by each
network in the family and will have the same penalty across
the different networks. Penalties for nonattractor states will
differ across networks, depending on the particular attractor
in whose basin that nonattractor state may happen to lie in.

MELANOMA EXAMPLE
Here we apply the methodology of this section to the same
melanoma data considered earlier. As before, a family of net-
works with seven genes: PIRIN, S100P, RET1, MART1, HADHB,
STC2 and WNT5A is constructed. Since all the available 31 data
points correspond to steady-state behavior, they should be con-
sidered as attractors in the networks. However, out of the 31
samples only 18 were distinct. To reduce the number of attrac-
tors, we form seven clusters from the data points and treat the
cluster centers as attractors. These attractors are classified into
two categories, GOOD and BAD, depending on the status of the
WNT5A gene [27]

Using the procedure of [21], we obtain four distinct BNs
(N1, N2, N3, N4) with the same set of seven attractors. These
networks are available in [27]. We assigned a penalty of five to

all states in the basin of the undesirable attractors (WNT5A
= 1) and 0 to all the other states. We used PIRIN as the con-
trol gene with cost of control equal to one. A forcible alter-
ation in the expression level of PIRIN is associated with v = 2
while v = 1 represents no control. 

To present the results, we
make use of policy trees where
the number inside each circle
represents the optimal control
action and the arc following
each circle corresponds to the
next observed state which leads
to the next optimal control
action. A policy tree for M = 3
with initial belief vector
π0 = [1/4, 1/4, 1/4, 1/4] and

initial state z0 = 3 is shown in Figure 2(a).
For purposes of comparison, three different policies are

considered side by side: PolTR being the optimal policy of this
section; Pol1 , Pol2 , Pol3 , Pol4 being the optimal policies
tuned to the individual BNs N1, N2, N3 and N4 respectively;
and PolSW being the policy obtained for a PBN in which each
BN is assigned equal selection probability. The expected cost is
0.75 when we control using PolTR, 1.5 when using PolSW , and
1.75, 2.5, 1.5 and 1.75 when using Pol1, Pol2, Pol3 and Pol4,
respectively. The expected uncontrolled cost is 2.5. For all
horizons M and all initial states z0 = i ∈ S the method of this
section is superior to the other methods considered. Out of the
128 states in the network, 89 states needed to be controlled in
at least one of the four networks. In particular for M = 5,
starting from such states, PolTR was more effective than PolSW

in reducing the cost by 0.1152 on average. In terms of absolute
probabilities PolTR was able to take the system to a desirable
attractor starting from all initial states and all networks with a
probability 1.0, except for states 4, 36, 68, and 100 in network
N2, which are uncontrollable from PIRIN. For PolSW , states 4,

[FIG2] (a) Policy tree for M = 3, initial state z0 = 3 and initial belief vector π0 = [1/4, 1/4, 1/4, 1/4], [11].  (b) Policy Trees and optimal
costs, for initial state z0 = 93, π0 = [1/4, 1/4, 1/4, 1/4], M = 2 (I), M = 3 (II) and M = 4 (III) [11].
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8, 24, 36, 68, and 100 are not taken to a desirable attractor in
N2. In the event of N2 being the underlying network, starting
from states 4, 36, 68, and 100, PolTR recognizes this and gives
up promptly, while PolSW keeps on applying control, incurring
extra costs, without any extra benefit. Policy trees for initial
state z0 = 93, π0 = [1/4, 1/4, 1/4, 1/4], and M = 2, 3, 4 are
shown in Figure 2(b). The expected cost with M = 2 is 1.0 that
can be further reduced to 0.25 if M ≥ 4. This is reasonable
because the algorithm has more time steps to identify and con-
trol the system. 

EXTERNAL INTERVENTION
IN THE INFINITE HORIZON CASE
The external control approaches presented so far have all focused
on manipulating external (control) variables that affect the tran-
sition probabilities of a PBN to desirably affect its dynamic evolu-
tion over a finite time horizon. These short-term policies are not
always effective in changing the steady-state behavior of the PBN,
even though they can change the dynamical performance of the
network for a small number of stages. Motivated by this, in [12]
we considered intervention via external control variables in PBNs
over an infinite length of time. We derived a control policy that
does not change from one time step to the next because imple-
mentations of such stationary policies are often simple and sta-
tionary policies can be used to shift the steady-state distribution
from undesirable states to desirable ones. We next present a tuto-
rial discussion of the results obtained.

We first note that the problem formulation and results sum-
marized earlier for the finite horizon case serve to motivate the
infinite horizon developments here. Consider the finite horizon
cost function being minimized in (7) and suppose that the con-
trol horizon characterized by M is made larger and larger and in
the limit we would like for it to tend to infinity. In trying to do
so, we immediately encounter a number of potential obstacles
that did not arise in the finite horizon case.

First, in the infinite horizon problem, the control horizon is
infinite and therefore there is no terminal state or its associated
terminal penalty. Consequently, for the infinite horizon case, the
cost per stage should incorporate the penalty of the state along
with the cost of control. Ck(i, v) of the finite horizon problem
should now be replaced by C̃(i, v, j ) so that the per stage cost
takes into account the origin, the destination and the control.

Second, in the finite horizon problem, the summation in (7) is
a finite one and so the quantity being minimized is finite. If we let
the control horizon go to infinity, there is a possibility that the
summation of the one stage costs may go to infinity (for all con-
trols) leading to an ill-posed optimization problem. To make the
optimization problem well posed, the cost considered in (7) has to
be modified before letting the length M of the control horizon
tend to infinity. There are a couple of approaches for doing this.
We will use the approach referred to in the literature as the prob-
lem of total cost with discounted and bounded cost per stage.

We assume that the cost per stage C̃(i, v, j) is bounded
∀ i, j ∈ S and v ∈ U and a discounting factor α ∈ (0, 1) is intro-
duced in the cost to make sure that the limit of the finite sums

converges as the horizon length goes to infinity. More specifical-
ly, our objective is to find a policy π = {µ0, µ1......}, where
µk : S → U, k = 0, 1...., that minimizes the cost function

Jπ (z0) = lim
M→∞

E

{
M−1∑
k=0

αkC̃(zk, µk(zk), dk)

}
, (14)

where the cost per stage C̃ : S × U × D → � is given. (Note
that a Markov chain can be modeled by zk+1 = dk [23]. Hence
the destination state is the same as the disturbance dk.) In the
general formulation, the inclusion of α in the cost captures the
fact that costs incurred at a later time are less significant. In the
case of cancer treatment, α < 1 signifies that the condition of
the patient in the initial stages of treatment is more important
than the condition at a later stage, or in other words, the reward
for improving the condition of the patient in the present is more
significant than the reward obtained from similar improvement
at a later stage. This approach is reasonable if we keep in mind
the expected life span of the patient. Another approach for
ensuring that the infinite horizon cost is well defined is referred
to as the average cost per stage formulation and has been con-
sidered in [12].

We next present the solution to the discounted and bounded
cost per stage problem. 

Let us denote by � the set of all admissible policies π , i.e.,,
the set of all sequences of functions π = µ0, µ1, .... with
µk(z) : S → U, k = 0, 1, ...... The optimal cost function J* is
defined by

J∗(z) = min
π∈�

Jπ (z), z ∈ S. (15)

A stationary policy is an admissible policy of the form
π = µ,µ, ...., and its corresponding cost function is denoted
by Jµ. We say that the stationary policy π = µ,µ.... is optimal
if Jµ(z) = J∗(z) for all states z. 

OPTIMAL CONTROL SOLUTION
In this section, we solve the problem of minimizing the cost in
(14) under the assumption that the cost per stage C̃(i, v, d) is
bounded, i.e., ∃ B > 0 such that C̃ satisfies |C̃(z, v, d)| ≤ B,
for all (z, v, d) ∈ S × U × D. In the case of context-sensitive
PBNs, C̃(i, v, d ) is bounded since the control and disturbance
spaces are finite. 

Observe that if we set CM(zM) = 0 ∀ zM ∈ S and
Ck(zk, vk) = αkC(zk, vk) (where C(zk, vk) is the expectation of
C̃(zk, vk, dk) over dk) in the finite horizon problem of (7) and let
M → ∞, then we obtain the infinite horizon cost function con-
sidered in (14). Thus it seems reasonable that the finite horizon
solution described by (9) and (10) could provide a basis for arriv-
ing at the solution of the optimization problem in (15) where Jπ
is given by (14). A formal derivation of this connection is given
in [23]. Here we simply state the result and present an intuitive
justification for it. 

Towards this end, note that (10) in the dynamic program-
ming algorithm basically describes how the optimal cost Jk+1
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propagates backwards in time
to the optimal cost Jk in the
finite horizon problem of (7).
For the cost function consid-
ered in (14), it is clear that the
cost Jk+1 must be discounted
by the factor α while being
propagated to the previous
stage. Consequently, for the optimal control problem of this
section, (10) will have to be replaced by

Jk(i ) = min
v∈U


C(i, v) + α

2n∑
j=1

aij(v) Jk+1( j)


 . (16)

The above equation motivates the introduction of the following
mapping. For any cost function J : S → �, define the mapping
TJ : S → � by

(TJ )(i ) = min
v∈U


C(i, v) + α

2n∑
j=1

aij(v) J( j)


 , i ∈ S. (17)

Note that TJ is the optimal cost function for the one-stage
(finite horizon) problem that has stage cost C and terminal
cost α J.

It can be shown [23] that the optimal cost function J∗ is the
unique fixed point of the map T and the iteration Jk+1 = TJk

converges to J∗ as t → ∞. This provides us with a computa-
tional algorithm for determining the optimal cost function by
running the recursion

Jk+1 = TJk, k = 0, 1, 2, . . . (18)

for any bounded initial cost function J0 : S → �. The iteration
described in (18) above is referred to as the value iteration pro-

cedure since at every stage we
are iterating on the values of
the cost function and the opti-
mal policy simply falls out as a
by product when the iteration
converges to the optimal value
of the cost function. The details
of the optimality and conver-

gence of the value iteration procedure, along with that of
another computational algorithm referred to as policy itera-
tion, are available in [23]. 

MELANOMA EXAMPLE
In this section, we apply the infinite horizon control policy to a
context-sensitive PBN derived from the same gene expression
data as before. The network contains the seven genes WNT5A,
pirin, S100P, RET1, MART1, HADHB and STC2. In this case, to
obtain the PBN, we have used the algorithms described in [21]
to construct four highly probable BNs to use as the constituent
BNs in the PBN. The states are ordered as WNT5A, pirin, S100P,
RET1, MART1, HADHB and STC2, with WNT5A as the most sig-
nificant bit (MSB) and STC2 as the least significant bit (LSB).

The control strategy of this section is applied to the designed
PBN with pirin chosen as the control gene (v = 2 signifying the
state of pirin is reversed and v = 1 signifying no intervention)
and p = q = 0.01 (see the p and q definitions). Since our objec-
tive is to down regulate the WNT5A gene, a higher penalty of
five is assigned for destination states having WNT5a up-regulat-
ed. Also for a given WNT5A status for the destination state, a
higher penalty is assigned when the control is active (control
cost assumed to be one) versus when it is not. Further details on
the penalty assignment are available in [12].

Figure 3 shows the total cost for the discounted cost func-
tion with bounded cost per stage originating from each of the

[FIG3] Total cost originating from different initial states [12].
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128 states, after the iterations have converged, with the discount
factor α chosen to be 0.9. As before, the control objective is to
down regulate the WNT5A gene. From Figure 3, it is clear that
the total cost with an optimal stationary policy is much lower
than that without control, which agrees with our objective. 

Figure 4(a) shows the steady-state distribution of the PBN
using the obtained stationary policy, and (b) shows the origi-
nal PBN steady-state distribution for comparison purposes.
We should note that the states from 1–64 have WNT5A 0 and
hence are desirable states, as compared to states 65–128 that
have WNT5A 1 and hence are undesirable. The steady-state
distribution Figure 4(a) and (b) shows that the stationary
policy has enabled us to shift the probability mass from the
bad states to states with lower metastatic competence. For
example, state 66 (WNT5A is 1) has a high probability mass
(0.15) in the original steady state but stationary control has
reduced its steady-state mass to 0.04. Similarly, the probabili-
ty mass of state 64 (desirable state) is high when using the
stationary policy. 

CONCLUDING REMARKS
We have discussed several approaches that have been recently
developed for addressing the issue of intervention in probabilis-
tic gene regulatory networks. The results reported indicate that
significant progress has been made in this area; however,
numerous open issues remain, and these will have to be suc-
cessfully tackled before the methods suggested in this article
find application in actual clinical practice. We next discuss some
of the issues that we are aware of at the current time.

METHODICAL ASSIGNMENT OF TERMINAL PENALTIES
The formulation of the optimal control problem assumes that
there is a terminal penalty associated with each state of the
PBN; however, assignment of these terminal penalties for can-
cer therapy is by no means a straightforward task. The reason
is that while the intervention will be carried out only over a
finite horizon, one would like to continue to enjoy the bene-
fits in the steady state. For such purposes, the kind of termi-
nal penalty used for the melanoma cell line study is

inadequate since it fails to capture the steady-state behavior
once the intervention has ceased. To remedy the situation, we
propose to assign terminal penalties based on equivalence
classes. The results of preliminary simulation studies in this
regard [27] appear to be encouraging.

CHOICE OF CONTROL INPUT
In the case of the melanoma cell line studies presented here,
one of the genes in the PBN, namely pirin, has been used as a
control input. The question is how to decide which gene to
use. Of course, one consideration is to use genes for which
inhibitors or enhancers are readily available. However, even if
such a gene is chosen, how can we be certain that it is capable
of controlling some other gene(s)? Although the answer is not
clear at this stage, we do believe that the traditional control
theoretic concept of controllability [28] may yield some use-
ful insights. Another possibility is to use the concept of gene
influence introduced in [1], an approach that we have prelimi-
narily explored in [10].

ROBUSTNESS OF THE CONTROL STRATEGIES
The control algorithms presented in this article have all been
analyzed assuming that the PBN model perfectly captures the
actual behavior of the gene regulatory network. Since errors
between the PBN model and the actual gene regulatory network
are inevitable, the designed control algorithms will have to be
robust to modeling errors if there is to be any hope of success
upon actual implementation. Such robustness considerations
have dominated the control literature for more than two
decades now and we believe that some of the results obtained
could be exploited in the context of application to genetic regu-
latory networks.

The optimal control results presented in this article assume
known transition probabilities and pertain to a problem of
known length for the finite-horizon case. Their extension to
the situation where the transition probabilities and the hori-
zon length are unknown is a topic for further investigation.
Finally, the results presented here correspond to the following
stages in standard control design: modeling, controller design,
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[FIG4] (a) Steady state using discounted cost stationary policy [12] and (b) original steady state [12].
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and verification of the performance of the designed controller
via computer simulations. The designed controllers will have
to be successfully implemented in practical studies, at least
with cancer cell lines, to validate the use of engineering
approaches in translational medicine. A considerable amount
of effort needs to be focused on this endeavor. 
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