
CLASSIFICATION

ULISSES BRAGA-NETO AND EDWARD DOUGHERTY

1. Introduction

Classification plays an important role in genomic signal analysis. For instance,
cDNA microarrays can provide expression measurements for thousands of genes at
once, and a key goal is to perform classification via different expression patterns.
This requires designing a classifier (decision function) that takes a vector of gene ex-
pression levels as input, and outputs a class label that predicts the class containing
the input vector. Classification can be between different kinds of cancer, different
stages of tumor development, or a host of such differences [1–12] (see also the bib-
liography on microarray-based classification provided as part of the supplementary
information to [13]) . Classifiers are designed from a sample of expression vectors.
This involves assessing expression levels from RNA obtained from the different tis-
sues with microarrays, determining genes whose expression levels can be used as
classifier features (variables), and then applying some rule to design the classifier
from the sample microarray data. Expression values have randomness arising from
both biological and experimental variability. Design, performance evaluation, and
application of features must take this randomness into account. Three critical issues
arise. First, given a set of variables, how does one design a classifier from the sam-
ple data that provides good classification over the general population? Second, how
does one estimate the error of a designed classifier when data are limited? Third,
given a large set of potential features, such as the large number of expression levels
provided by each microarray, how does one select a set of features as the input to
the classifier? Small samples (relative to the number of features) are ubiquitous in
genomic signal processing and impact all three issues [14].

2. Classifier Design

Classification involves a feature vector X = (X1, X2, . . . , Xd) on d-dimensional
Euclidean space IRd, composed of random variables (features), a binary random
variable Y , and a classifier ψ : IRd → {0, 1} to serve as a predictor of Y , which
means that Y is to be predicted by ψ(X). The values, 0 or 1, of Y are treated
as class labels. We assume there is a joint feature-label distribution F for the pair
(X, Y) that completely characterizes the stochastic classification problem.

The space of all classifiers, which in our case is the space of all binary functions
on IRd, will be denoted by F . The error ε[ψ] of ψ ∈ F is the probability that the
classification is erroneous, namely, ε[ψ] = P (ψ(X) 6= Y). It can be written as

(1) ε[ψ] = EF [|Y − ψ(X)|],
where the expectation is taken relative to the feature-label distribution F (as indi-
cated by the notation EF). In other words, ε[ψ] equals the mean absolute difference

1

2 ULISSES BRAGA-NETO AND EDWARD DOUGHERTY

between label and classification. Owing to the binary nature of ψ(X) and Y , ε[ψ]
also equals the mean square error between label and classification.

2.1. Bayes Classifier. An optimal classifier, ψd, is one having minimal error, εd,
among all ψ ∈ F , so that it is the minimal mean-absolute-error predictor of Y . The
optimal classifier ψd is called the Bayes classifier and its error εd is called the Bayes
error. The Bayes classifier, and thus the Bayes error, depends on the feature-label
distribution of (X, Y) — how well the labels are distributed among the variables
being used to discriminate them, and how the variables are distributed in IRd.

The posterior distributions for X are defined by η0(x) = fX,Y (x, 0)/fX(x) and
η1(x) = fX,Y (x, 1)/fX(x), where fX,Y (x, y) and fX(x) are the densities for (X, Y)
and X, respectively. The posteriors η0(x) and η1(x) give the probability that Y = 0
or Y = 1, respectively, given X = x. Note that η0(x) = 1− η1(x). Note also that,
as a function of X, η0(X) and η1(X) are random variables. Furthermore, in this
binary-label setting, η1(x) = E[Y |x] is the conditional expectation of Y given x.
The error of an arbitrary classifier can be expressed as

(2) ε[ψ] =
∫

{x|ψ(x)=0}

η1(x)fX(x)dx +
∫

{x|ψ(x)=1}

η0(x)fX(x)dx

It is easy to verify that the right-hand side of Eq. (2) is minimized by

(3) ψd(x) =
{

1, if η1(x) ≥ η0(x)
0, otherwise

Hence, the Bayes classifier ψd(x) is defined to be 1 or 0 according to whether Y is
more likely to be 1 or 0 given x (ties may be broken arbitrarily). For this reason,
the Bayes classifier is also known as the maximum a-posteriori (MAP) classifier. It
follows from Eqs. (2) and (3) that the Bayes error is given by

εd =
∫

{x|η1(x)<η0(x)}

η1(x)fX(x)dx +
∫

{x|η1(x)≥η0(x)}

η0(x)fX(x)dx

= E [min{η0(X), η1(X)}]
(4)

By Jensen’s inequality, it follows from Eq. (4) that εd ≤ min{E[η0(X)], E[η1(X)]}.
Therefore, if either of the posteriors are uniformly small (for example, if one of the
classes is much more likely than the other), then the Bayes error is necessarily small.

The problem with the Bayes classifier is that the feature-label distribution is
typically unknown, and thus so are the posteriors. Therefore, we must design a
classifier from sample data. An obvious approach would be to estimate the posterior
distributions from data, but often we do not have sufficient data to obtain good
estimates. Moreover, good classifiers can be obtained even when we lack sufficient
data for satisfactory density estimation.

2.2. Classification Rules. Design of a classifier ψn from a random sample Sn =
{(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} of vector-label pairs drawn from the feature-label
distribution requires a classification rule that operates on random samples to yield
a classifier. A classification rule is a mapping Ψn : [IRd × {0, 1}]n → F . Given
a sample Sn, we obtain a designed classifier ψn = Ψn(Sn) ∈ F , according to
the rule Ψn. To be fully formal, one might write ψn(Sn;X) rather than ψn(X);
however, we will use the simpler notation, keeping in mind that ψn derives from

CLASSIFICATION 3

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
good prognosis
bad prognosis

Figure 1. Example of a linear designed classifier.

a classification rule applied to a feature-label sample. Note that what is usually
called a classification rule is really a sequence of classification rules depending on n.
Fig. 1 presents an example of a linear designed classifier, obtained via the LDA
classification rule (see Section 2.4.9). The sample data in this example consist of
expression values of two top discriminatory genes on a total of 295 microarrays
from a cancer classification study [15] (see Section 2.5 for more details about this
data set).

The Bayes error εd is estimated by the expected error of the designed classifier
εn = ε[ψn]. There is a design error

(5) ∆n = εn − εd,

εn and ∆n being sample-dependent random variables. The expected design error is
E[∆n], the expectation being relative to all possible samples. The expected error
of ψn is decomposed according to

(6) E[εn] = εd + E[∆n].

The quantity E[εn], or alternatively E[∆n], measures the global properties of clas-
sifications rules, rather than the performance of classifiers designed on individual
samples (on the other hand, a classification rule for which E[εn] is small will also
tend to produce designed classifiers that display small error).

Asymptotic properties of a classification rule concern large samples (as n →
∞). A rule is said to be consistent for a feature-label distribution of (X, Y) if
∆n → 0 in the mean, meaning E[∆n] → 0 as n → ∞. For a consistent rule, the
expected design error can be made arbitrarily small for a sufficiently large amount
of data. Since the feature-label distribution is unknown a priori, rules for which
convergence is independent of the distribution are desirable. A classification rule

4 ULISSES BRAGA-NETO AND EDWARD DOUGHERTY

is universally consistent if ∆n → 0 in the mean for any distribution of (X, Y).
Universal consistency is useful for large samples, but has little consequence for
small samples.

2.3. Constrained Classifier Design. A classification rule can yield a classifier
that makes very few, or no, errors on the sample data on which it is designed,
but performs poorly on the distribution as a whole, and therefore on new data to
which it is applied. This situation is exacerbated by complex classifiers and small
samples. If the sample size is dictated by experimental conditions, such as cost or
the availability of patient RNA for expression microarrays, then one only has control
over classifier complexity. The situation with which we are concerned is typically
referred to as overfitting. The basic point is that a classification rule should not
cut up the space in a manner too complex for the amount of sample data available.
This might improve the apparent error rate (i.e., the number of errors committed
by the classifier using the training data as testing points), but at the same time it
will most likely worsen the true error of the classifier for independent future data
(also called the generalization error in this context). The problem is not necessarily
mitigated by applying an error-estimation rule — perhaps more sophisticated than
the apparent error rate — to the designed classifier to see if it ”actually” performs
well, since when there is only a small amount of data available, error-estimation
rules are very imprecise (as we will see in Section 4), and the imprecision tends to be
worse for complex classification rules. Hence, a low error estimate is not sufficient to
overcome our expectation of a large expected error when using a complex classifier
with a small data set. Depending on the amount of data available, we need to
consider constrained classification rules.

Constraining classifier design means restricting the functions from which a clas-
sifier can be chosen to a class C ⊆ F . This leads to trying to find an optimal
constrained classifier, ψC ∈ C, having error εC . Constraining the classifier can re-
duce the expected error, but at the cost of increasing the error of the best possible
classifier. Since optimization in C is over a subclass of classifiers, the error εC of ψC
will typically exceed the Bayes error, unless the Bayes classifier happens to be in
C. This cost of constraint (approximation) is

(7) ∆C = εC − εd.

A classification rule yields a classifier ψn,C ∈ C, with error εn,C , and εn,C ≥ εC ≥ εd.
Design error for constrained classification is

(8) ∆n,C = εn,C − εC .

For small samples, this can be substantially less than ∆n, depending on C and the
classification rule. The error of the designed constrained classifier is decomposed as

(9) εn,C = εd + ∆C + ∆n,C .

Therefore, the expected error of the designed classifier from C can be decomposed
as

(10) E[εn,C] = εd + ∆C + E[∆n,C].

The constraint is beneficial if and only if E[εn,C] < E[εn], i.e., if

(11) ∆C < E[∆n]− E[∆n,C].

CLASSIFICATION 5

number of samples, n

E[εn]

error

E[εn,C]

εd

εC

N0

Figure 2. Errors of unconstrained and constrained classifiers.

If the cost of constraint is less than the decrease in expected design error, then
the expected error of ψn,C is less than that of ψn. The dilemma: strong constraint
reduces E[∆n,C] at the cost of increasing εC .

The matter can be graphically illustrated. For two classification rules to be
shortly introduced, the discrete-data plug-in rule and the cubic histogram rule with
fixed cube size, E[∆n] is non-increasing, meaning that E[∆n+1] ≤ E[∆n]. This
means that the expected design error never increases as sample sizes increase, and
it holds for any feature-label distribution. Such classification rules are called smart.
They fit our intuition about increasing sample sizes. Now consider a consistent rule,
constraint, and distribution for which E[∆n+1] ≤ E[∆n] and E[∆n+1,C] ≤ E[∆n,C].
Fig. 2 illustrates the design problem. If n is sufficiently large, then E[εn] < E[εn,C];
however, if n is sufficiently small, then E[εn] > E[εn,C]. The point N0 at which
the decreasing lines cross is the cut-off: for n > N0, the constraint is detrimental;
for n < N0, it is beneficial. When n < N0, the advantage of the constraint is the
difference between the decreasing solid and dashed lines.

A fundamental theorem provides bounds for E[∆n,C] [16]. The empirical-error
rule chooses the classifier in C that makes the least number of errors on the sample
data. For this (intuitive) rule, E[∆n,C] satisfies the bound

(12) E[∆n,C] ≤ 8

√
VC logn+ 4

2n

where VC is the VC (Vapnik-Chervonenkis) dimension of C. Details of the VC
dimension are outside the scope of this paper. Nonetheless, it is clear from Eq. (12)
that n must greatly exceed VC for the bound to be small.

To illustrate the problematic nature of complex (high-VC-dimension) classifiers,
we apply the preceding bound to two classifier classes to be introduced in the next
section. The VC dimension of a linear classifier is d + 1, where d is the number
of variables, whereas the VC dimension of a neural network with an even number
k of neurons has the lower bound VC ≥ dk [17]. If k is odd, then VC ≥ d(k − 1).
Thus, if one wants to use a large number of neurons to obtain a classifier that
can very finely fit the data, the VC dimension can greatly exceed that of a linear

6 ULISSES BRAGA-NETO AND EDWARD DOUGHERTY

classifier. To appreciate the implications, suppose d = k = 10. Then the VC
dimension of a neural network is bounded below by 100. Setting VC = 100 and
n = 5000 in Eq. (12) yields a bound exceeding 1, which says nothing. Not only is the
inequality in Eq. (12) a bound, it is worst-case because there are no distributional
assumptions. The situation may not be nearly so bad. Still, one must proceed with
care, especially in the absence of distributional knowledge. Increasing complexity
is often counterproductive unless there is a large sample available. Otherwise, one
could easily end up with a very bad classifier whose error estimate is very small!

2.4. Specific Classification Rules. In this section of the chapter we discuss some
commonly employed classification rules, beginning with a rule that is employed in
different manners to produce related rules.

2.4.1. Plug-in Rule. Considering the Bayes classifier defined by Eq. (3), let η1,n(x)
be an estimate of η1(x) based on a sample Sn, and let η0,n(x) = 1 − η1,n(x). A
reasonable classification rule is to define ψn(x) according to Eq. (3) with η0,n(x)
and η1,n(x) in place of η0(x) and η1(x), respectively. For this plug-in rule,

(13) ∆n =
∫

{x:ψn(x) 6=ψd(x)

|η1,n(x)− η0,n(x)| fX(x) dx

A sufficient condition for the plug-in rule to be consistent is given by

(14) lim
n→∞

∫

IRd

|η1(x)− η1,n(x)| 12 dx = 0

2.4.2. Histogram Rule. Suppose that IRd is partitioned into cubes of equal side
length rn. For each point x ∈ IRd, the histogram rule defines ψn(x) to be 0 or 1
according to which is the majority among the labels for points in the cube contain-
ing x. If the cubes are defined so that rn → 0 and nrdn → ∞ as n → ∞, then the
rule is universally consistent [18].

2.4.3. Multinomial Discrimination. The situation in which only a finite number
of observed patterns are possible, say z1, z2, . . . , zm, is referred to as multinomial
discrimination. An important example is the so-called fundamental rule [19], which
assigns at each pattern zi the label with the maximum relative frequency among
all sample points corresponding to zi. It can be checked easily that this is the
plug-in version of Eq. (3) — for this reason, the fundamental rule is also called the
discrete-data plug-in rule. The fundamental rule corresponds to a special case of
the histogram rule, when the partition used is such that each cell contains exactly
one of the possible patterns. For a zero Bayes error and equiprobable patterns, we
have that E[εn] ≥ (1 − 1/m)n, which shows clearly the effect of using too small a
sample. Indeed, if n ≤ m/2, then the inequality yields E[εn] ≥ 0.5, which shows
that the fundamental rule is useless in this case. In the other direction (for large
samples), it is shown in [19] that the fundamental rule is universally consistent and
E[εn] ≤ εd + 1.075

√
m/n. Multinomial discrimination plays a key role in gene

prediction for quantized expression values, in particular, binarized gene expressions
in which a gene is qualitatively labeled as ON (1) or OFF (0) [20–22]. In this
situation, if there are r binary gene values used to predict a target gene value,
then m = 2r and prediction reduces to multinomial discrimination. Extension
to the case of any finite expression quantization is straightforward. This kind of

CLASSIFICATION 7

quantization occurs with discrete gene regulatory networks, in particular, Boolean
networks [23, 24]. In a related vein, it has been shown that binarized (ON, OFF)
expression values can be used to obtain good classification [25] and clustering [26].

2.4.4. K-nearest-neighbor Rule. For the basic nearest-neighbor rule (NN), ψn is
defined for each x ∈ IRd by letting ψn(x) take the label of the sample point closest
to x. For the NN rule, no matter the feature-label distribution of (X, Y), εd ≤
limn→∞E[εn]≤ 2εd [27]. It follows that limn→∞E[∆n]≤ εd. Hence, the asymptotic
expected design error is small if the Bayes error is small; however, this result does
not give consistency. More generally, for the k-nearest-neighbor rule, with k odd,
the k points closest to x are selected and ψn(x) is defined to be 0 or 1 according
to which is the majority among the labels of these points. If k = 1, this gives
the NN rule. The limit of E[εn] as n → ∞ can be expressed analytically and
various upper bounds exist. In particular, limn→∞E[∆n] ≤ (ke)−1/2. This does
not give consistency, but it does show that the design error gets arbitrarily small
for sufficiently large k as n→ ∞. The kNN rule is universally consistent if k →∞
and k/n→ 0 as n→∞ [28].

2.4.5. Kernel Rules. The moving-window rule takes the majority label among all
sample points within a specified distance of x. The rule can be “smoothed” by
giving weights to different sample points: the weights associated with the 0- and
1-labeled sample points are added up separately, and the output is defined to be the
label with the larger sum. A kernel rule is constructed by defining a weighting kernel
based on the distance of a sample point from x. The Gaussian kernel is defined by
Kh(x) = e−‖x/h‖2 , whereas the Epanechnikov kernel is given byKh(x) = 1−||x/h||2
if ||x|| ≤ h and Kh(x) = 0 if ||x|| > h. If x is the point at which the classifier
is being defined, then the weight at a sample point xk is Kh(x − xk). Since the
Gaussian kernel is never 0, all sample points get some weight. The Epanechnikov
kernel is 0 for sample points at a distance more than h from x, so that, like the
moving-window rule, only sample points within a certain radius contribute to the
definition of ψn(x). The moving-window rule is a special case of a kernel rule with
the weights being 1 within a specified radius. The kernel rules we have given are
universally consistent [19].

2.4.6. Linear Classifiers. For classification rules determined by parametric repre-
sentation, the classifier is postulated to have a functional form ψ(x1, x2,. . . , xd;
a0, a1,. . . , ar), where the parameters a0, a1,. . . , ar are to be determined by some
estimation procedure based on the sample data. For parametric representation, we
assume the labels to be −1 and 1. The most basic functional form involves a linear
combination of the co-ordinates of the observations. A binary function is obtained
by thresholding. A linear classifier , or perceptron, has the form

(15) ψ(x) = T

[
a0 +

d∑

i=1

aixi

]

where x = (x1, x2,. . . , xd) and T thresholds at 0 and yields −1 or 1. A linear clas-
sifier divides the space into two half-spaces determined by the hyperplane defined
by the parameters a0, a1,. . . , ad. The hyperplane is determined by the equation
formed from setting the linear combination equal to 0. Using the dot product, a ·x,
which is equal to the sum in the preceding equation absent the constant term a0,

8 ULISSES BRAGA-NETO AND EDWARD DOUGHERTY

the hyperplane is defined by a ·x = −a0. Numerous design procedures have been
proposed to avoid the computational requirement of full optimization for linear
classifiers. Each finds parameters that hopefully define a linear classifier whose er-
ror is close to optimal. Often, analysis of the design procedure depends on whether
the sample data is linearly separable, meaning there exists a hyperplane such that
points with label −1 lie on one side of the hyperplane and the points with label
1 lie on the other side. There are many design algorithms for linear classification,
each meant to achieve some advantage relative to other methods.

2.4.7. Support Vector Machines. The support vector machine (SVM) provides a
method for designing linear classifiers [29]. Fig. 3 shows a linearly-separable data
set and three hyperplanes (lines). The outer lines pass through points in the sample
data, and the third, called the maximal-margin hyperplane (MMH) is equidistant
between the outer lines. It has the property that the distance from it to the nearest
−1-labeled sample point is equal to the distance from it to the nearest 1-labeled
sample point. The sample points closest to it are called support vectors (the circled
sample points in Fig. 3). The distance from the MMH to any support vector is
called the margin. The matter is formalized by recognizing that differently labeled
sets are separable by the hyperplane u ·x = c, where u is a unit vector and c is a
constant, if u ·xk > c for yk = 1 and u ·xk < c for yk = −1. For any unit vector
u, the margin is given by

(16) ρ(u) =
1
2

(
min

{xk: yk=1}
u · xk − max

{xk: yk=−1}
u · xk

)

The MMH, which is unique, can be found by solving the following quadratic opti-
mization problem:

min ||v||, subject to

v · xk + b ≥ 1, if yk = 1
v · xk + b ≤ −1, if yk = −1

(17)

If v0 satisfies this optimization problem, then the vector defining the MMH and
the margin are given by u0 = v0/|| v0|| and ρ(u0) = ||v0||−1, respectively.

If the sample is not linearly separable, then one has two choices: find a reasonable
linear classifier or find a nonlinear classifier. In the first case, the preceding method
can be modified by making appropriate changes to the optimization problem (17);
in the second case, one can map the sample points into a higher dimensional space
where they are linearly separable, find a hyperplane in that space, and then map
back into the original space (we refer the reader to [29] for the details).

2.4.8. Quadratic Discriminant Analysis. Let Rk denote the region in IRd where the
Bayes classifier has the value k, for k = 0,1. According to Eq. (3), x ∈ Rk if
ηk(x) > ηj(x), for j 6= k (ties in the posteriors being broken arbitrarily). Since
ηk(x) = fX|Y (x|k)fY (k)/fX(x), upon taking the logarithm and discarding the
common term fX(x), this is equivalent to x ∈ Rk if dk(x) > dj(x), where the
discriminant dk(x) is defined by

(18) dk(x) = log fX|Y (x|k) + log fY (k)

CLASSIFICATION 9

MMH

margin

Figure 3. Maximal-margin hyperplane for linearly-separable
data. The support vectors are the circled sample points.

If the conditional densities fX|Y (x|0) and fX|Y (x|1) are normally distributed, then

(19) fX|Y (x|k) =
1√

(2π)n det[Kk]
exp

[
−1

2
(x− uk)′K−1

k (x− uk)
]

where Kk and uk are the covariance matrix and mean vector for class k, respectively.
Dropping the constant terms and multiplying by the factor 2 (which has no effect
on classification), the discriminant becomes

(20) dk(x) = −(x− uk)′K−1
k (x− uk)− log(det[Kk]) + 2 log fY (k)

Hence, the discriminant is quadratic in x. The first term in (20) is known as
the Mahalanobis distance between x and uk. A simple calculation shows that the
optimal decision boundary d1(x)− d0(x) = 0 is given by

x′
(
K−1

0 −K−1
1

)
x − 2

(
u′0K

−1
0 − u′1K

−1
1

)
x+

+ u′0K
−1
0 u0 − u′1K

−1
1 u1 + log

(
det[K0]
det[K1]

)
+ 2 log

(
fY (1)
fY (0)

)
= 0.

(21)

This is an equation in the form x′Ax − b′x + c = 0. In 2-dimensional space,
such an equation produces conical-section decision curves, whereas in 3-dimensional
spaces, it produces decision surfaces known as quadrics. Plugging sample-based
estimates for the covariance matrices, mean vectors, and priors into (21), leads to
a classification rule known as quadratic discriminant analysis (QDA). Depending
on the estimated coefficients in (21), decision boundaries ranging from paraboloids
to spheres can be produced by QDA.

2.4.9. Linear Discriminant Analysis. If both conditional densities possess the same
covariance matrix K, then the quadratic term and the first logarithmic term vanish

10 ULISSES BRAGA-NETO AND EDWARD DOUGHERTY

in (21), yielding

(22) (u1 − u0)′K−1x − 1
2

(
u′1K

−1u1 − u′0K
−1u0

)
+ log

(
fY (1)
fY (0)

)
= 0.

This is an equation in the form ax′ + m = 0. Such equations produces decision
surfaces that are hyperplanes in d-dimensional space. Plugging into (22) sample-
based estimates for the covariance matrix, mean vectors, and priors, leads to a
classification rule known as linear discriminant analysis (LDA). In practice, the
usual maximum-likelihood estimates are employed for the mean vectors, whereas
the estimate of the covariance matrix is often given by the pooled covariance matrix:

(23) K̂ =
1
2
(K̂0 + K̂1),

where K̂k is the usual maximum-likelihood estimate of the covariance matrix of
class k (note that, in general, K̂0 6= K̂1). In addition, especially in the case of
small sample sizes, it is common practice to assume equally-likely classes, so that
term log(fY (1)/fY (0)) is zero. This avoids the use of unreliable estimates of the
priors derived from limited data.

2.4.10. Nearest-Mean Classifier. If, besides a common covariance matrix and equally-
likely classes, one assumes uncorrelated conditional distributions, with covariance
matrix K = σ2I, then Eq. (22) reduces to

(24) (u1 − u0)′x − 1
2

(||u1||2 − ||u0||2
)

= 0.

The optimal hyperplane in this case is perpendicular to the line joining the means
and passes through the midpoint of that line. Therefore, a sample point is assigned
to class k if its distance to the mean vector uk is minimal. This also follows from
the fact that the discriminant function in (20) can be written in this case simply as
dk(x) = −||x−uk||. Substituting sample-based mean estimates for the mean vectors
in (24) leads to the nearest-mean classifier (NMC). This classification rule has the
advantage of avoiding the estimation (and inversion) of the covariance matrices, so
it can be effective in extreme small-sample scenarios.

Equations (21), (22) and (24), for the QDA, LDA, and NMC rules, respectively,
were derived under the Gaussian assumption, but in practice can perform well so
long as the underlying class conditional densities are approximately Gaussian —
and one can obtain good estimates of the relevant covariance matrices. Owing to
the greater number of parameters to be estimated for QDA as opposed to LDA
and NMC, one can proceed with smaller samples for LDA than with QDA, and
in extreme small-sample cases, NMC may be the most effective choice, due to its
avoiding the estimation of the covariance matrices. Of course, if the assumption of
equal and/or uncorrelated covariance matrices does not hold, then the LDA and
NMC rules will have asymptotic expected error biased away from the Bayes error.
Therefore, in large-sample scenarios, QDA is preferable. However, LDA has been
reported to be more robust relative to the underlying Gaussian assumption than
QDA [30]. In our experience, LDA has proved to be a very robust classification
rule (see Section 2.5), which is effective for a wide range of sample sizes.

CLASSIFICATION 11

2.4.11. Neural Networks. A (feed-forward) two-layer neural network has the form

(25) ψ(x) = T

[
c0 +

k∑

i=1

ciσ[ψi(x)]

]

where T thresholds at 0, σ is a sigmoid function (i.e., a nondecreasing function with
limits −1 and +1 at −∞ and ∞, respectively), and

(26) ψi(x) = ai0 +
d∑

j=1

aijxj

Each operator in the sum of Eq. (25) is called a neuron. These form the hidden
layer. We consider neural networks with the threshold sigmoid: σ(x) = −1 if x ≤ 0
and σ(x) = 1 if x > 0. If k →∞ such that (k log n)/n→ 0 as n→∞, then, as a
class, neural networks are universally consistent [31], but one should beware of the
increasing number of neurons required.

A key point here is that any function whose absolute value possesses finite inte-
gral can be approximated arbitrarily closely by a sufficiently complex neural net-
work. While this is theoretically important, there are limitations to its practical
usefulness. Not only does one not know the function, in this case the Bayes clas-
sifier, whose approximation is desired, but even were we to know the function and
how to find the necessary coefficients, a close approximation can require an ex-
tremely large number of model parameters. Given the neural-network structure,
the task is to estimate the optimal weights. As the number of model parameters
grows, use of the model for classifier design becomes increasingly intractable owing
to the increasing amount of data required for estimation of the model parameters.
Since the number of hidden units must be kept relatively small, thereby requiring
significant constraint, when data are limited, there is no assurance that the opti-
mal neural network of the prescribed form closely approximates the Bayes classifier.
Model estimation is typically done by some iterative procedure, with advantages
and disadvantages being associated with different methods [32].

2.4.12. Classification Trees. The histogram rule partitions the space without ref-
erence to the actual data. One can instead partition the space based on the data,
either with our without reference to the labels. Tree classifiers are a common way of
performing data-dependent partitioning. Since any tree can be transformed into a
binary tree, we need only consider binary classification trees. A tree is constructed
recursively based on some criteria. If S represents the set of all data, then it is
partitioned according to some rule into S = S1 ∪ S2. There are four possibilities:
(i) S1 is partitioned into S1 = S11 ∪ S12 and S2 is partitioned into S2 = S21 ∪ S22;
(ii) S1 is partitioned into S1 = S11 ∪ S12 and partitioning of S2 is terminated; (iii)
S2 is partitioned into S2 = S21 ∪ S22 and partitioning of S1 is terminated; and
(iv) partitioning of both S1 and S2 is terminated. In the last case, the partition
is complete; in any of the others, it proceeds recursively until all branches end in
termination, at which point the leaves on the tree represent the partition of the
space. On each cell (subset) in the final partition, the designed classifier is defined
to be 0 or 1, according to which is the majority among the labels of the points in
the cell.

A wide variety of classification trees whose leaves are rectangles in IRd can be
obtained by perpendicular splits. At each stage of growing the tree, a decision to

12 ULISSES BRAGA-NETO AND EDWARD DOUGHERTY

split a rectangle R is made according to a coordinate decision of the form xji ≤ α,
where xj = (xj1, x

j
2, ..., x

j
d) is a sample point in IRd. Also at each stage, there are

two collections of rectangles, R0 and R1, determined by majority vote of the labels,
so that R ∈ R1 if and only if the majority of labels for points in R have value 1.
The 0 and 1 decision regions are determined by the unions of rectangles in R0 and
R1, respectively. A final classification tree, and therefore the designed classifier,
depends on the splitting criterion, choice of α, and a stopping criterion. Two
desirable attributes of a stopping criterion are that the leaf nodes (final rectangles)
be small in number so that the complexity of the classifier be not too great for
the amount of data (thus avoiding overfitting), and that the labels in each final
rectangle be not evenly split, thereby increasing the likelihood that the majority
label accurately reflects the distribution in the rectangle. A rectangle is said to
be pure relative to a particular sample if all labels corresponding to points in the
rectangle possess the same label.

One popular method of splitting, which goes under the name Classification and
Regression Trees (CART), is based on the notion of an impurity function. For any
rectangle R, let N0(R) and N1(R) be the numbers of 0-labeled and 1-labeled points,
respectively, in R, and let N(R) = N0(R) + N1(R) be the total number of points
in R. The impurity of R is defined by

(27) κ(R) = ξ(pR, 1− pR)

where pR = N0(R)/N(R) is the proportion of 0 labels in R, and where ξ(p, 1−p) is a
nonnegative function satisfying the following conditions: (1) ξ(0.5, 0.5) ≥ ξ(p, 1−p)
for any p ∈ [0, 1]; (2) ξ(0, 1) = ξ(1, 0) = 0; and (3) as a function of p, ξ(p, 1 − p)
increases for p ∈ [0, 0.5] and decreases for p ∈ [0.5, 1]. Several observations follow
from the definition of ξ : (1) κ(R) is maximum when the proportions of 0-labeled
and 1-labeled points in R are equal (corresponding to maximum impurity); (2)
κ(R) = 0 if R is pure; and (3) κ(R) increases for greater impurity.

We mention three possible choices for ξ:
(1) ξe(p, 1− p) = −p log p− (1− p) log(1− p) (entropy impurity)
(2) ξg(p, 1− p) = p(1− p) (Gini impurity)
(3) ξm(p, 1− p) = min(p, 1− p) (misclassification impurity)

The origins of these three impurities lie in the definition of κ(R): ξe(p, 1 − p)
provides an entropy estimate, ξg(p, 1−p) provides a variance estimate for a binomial
distribution, and ξm(p, 1− p) provides a misclassification-rate estimate.

A splitting regimen is determined by the manner in which a split will cause
an overall decrease in impurity. Let i be a coordinate, α be a real number, R
be a rectangle to be split along the i-th coordinate, Riα,− be the sub-rectangle
resulting from the ith coordinate being less than or equal to α, and Riα,+ be the
sub-rectangle resulting from the ith coordinate being greater than α. Define the
impurity decrement by

(28) ∆i(R,α) = κ(R) − N(Riα,−)
N(R)

κ(Riα,−) − N(Riα,+)
N(R)

κ(Riα,+)

A good split will result in impurity reductions in the sub-rectangles. In computing
∆i(R, α), the new impurities are weighted by the proportions of points going into
the sub-rectangles. CART proceeds iteratively by splitting a rectangle at α̂ on
the ith coordinate if ∆i(R, α) is maximized for α = α̂. There are two possible

CLASSIFICATION 13

splitting strategies: (i) the coordinate i is given and ∆i(R, α) is maximized over
all α and R; (ii) the coordinate is not given and ∆i(R, α) is maximized over all i,
α, and R. Various stopping strategies are possible — for instance, stopping when
maximization of ∆i(R, α) yields a value below a preset threshold, or when there
are fewer than a specified number of sample points assigned to the node. One may
also continue to grow the tree until all leaves are pure and then prune.

2.5. Classification Performance. In this section, we present classification results
obtained with real patient data. Our purpose is to compare the performance of
several of the classification rules described in the previous sections, in terms of
the expected classification error, for different sample sizes and number of variables
(dimensionality).

The data used in the experiments come from a microarray-based classification
study [15] that analyzed a large number of microarrays, prepared with RNA from
breast tumor samples from each of 295 patients (see Fig. 1 for a plot of the ex-
pression values of two genes in these data). Using a previously established 70-gene
prognosis profile [33], a prognosis signature based on gene-expression was proposed
in [15], which correlated well with patient survival data and other existing clinical
measures. Of the N = 295 microarrays, N0 = 115 belong to the “good-prognosis”
class, whereas the remaining N1 = 180 belong to the “poor-prognosis” class.

Our experiments were set up in the following way. We used log-ratio gene ex-
pression values associated with the top genes found in [33]. We consider four basic
cases, corresponding to d = 2, 3, 4, 5 genes. In each case, we searched the best
combination, in terms of estimated Bayes error, of d genes among the top 10 genes,
with the purpose of not considering situations where there is too much confusion
between the classes, which makes the expected errors excessively large. The Bayes
error was computed by using (4) in conjunction with a Gaussian-kernel density
estimation method, for which the kernel variance is automatically selected by a
pseudolikelihood-based technique [34].

In each case, 1000 observations Sn of size ranging from n = 20 to n = 120, in
steps of 5, were drawn independently from the pool of 295 microarrays. Sampling
was stratified in the sense that the proportion of each class in the random sample
was fixed to N0/N for the first class and N1/N for the second class. A classifier
was designed for each sample Sn, using one of the classification rules described
previously, and its classification error was approximated by means of a holdout
estimator (see Section 4.1), whereby the 295−n sample points not drawn are used
as an independent test set (this is a good approximation to the true error, given the
large test sample). The errors for the 1000 independent sample sets were averaged
to provide a Monte-Carlo estimate of the expected error for the classification rule.

Fig. 4 displays four plots, one for each dimensionality considered. We have con-
sidered seven classification rules: linear discriminant analysis (LDA), quadratic dis-
criminant analysis (QDA), nearest-mean classification (NMC), 1-nearest neighbor
(1NN), 3-nearest neighbor (3NN), CART with a stopping rule that ends splitting
when there are six or fewer sample points in a node, and a neural network (NNET)
with 4 nodes in the hidden layer.

Confirming observations we have made previously, we can see that LDA performs
quite well, and so does 3NN. We see that QDA does a very good job for larger
sample sizes, but its performance degrades quickly for smaller sample sizes. NMC
does a very credible job, given its simplicity, and it can actually do quite well for

14 ULISSES BRAGA-NETO AND EDWARD DOUGHERTY

2 genes 3 genes

10 20 30 40 50 60 70 80 90 100 110 120
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

10 20 30 40 50 60 70 80 90 100 110 120
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

4 genes 5 genes

10 20 30 40 50 60 70 80 90 100 110 120
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

10 20 30 40 50 60 70 80 90 100 110 120
0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

LDA QDA NMC 1NN 3NN CART NNET

Figure 4. Expected error versus sample size for several classifi-
cation rules and number of genes.

very small sample sizes, as compared to the other classification rules. The neural
network performed well for 2 variables, but its performance quickly degrades as the
number of genes increases, which can be explained by the high complexity of this
classification rules, which leads to overfitting. CART and 1NN do not perform well
with this data set, due to severe overfitting (even with the regularizing stopping
criterion used for CART).

3. Regularization

Thus far we have taken the perspective that a collection of features is given,
sample data is obtained, and a classifier based on the features is designed from the
data via a classification rule. The feature set and sample data are taken as given,
and the designer selects a classification rule. In this section we consider alterations
to this paradigm in order to deal with the small-sample problem, more specifically,
a sample that is small relative to the number of features and classifier complexity.
These methods fall under the general category of regularization.

3.1. Regularized Discriminant Analysis. The small-sample problem for qua-
dratic discriminant analysis (QDA) can be appreciated by considering the spectral

CLASSIFICATION 15

decompositions of the covariance matrices,

(29) Kk =
d∑

j=1

λkjvkjv′kj

where λk1, λk2,. . . , λkd are the eigenvalues of Kk in decreasing order and vkj is
the eigenvector corresponding to λkj . Then it can be shown that the quadratic
discriminant of Eq. (20) takes the form

(30) dk(x) = −
d∑

j=1

[vkj(x− uk)]2

λkj
−

d∑

j=1

log λkj + 2 log fY (k)

The discriminant is strongly influenced by the smallest eigenvalues. This creates a
difficulty because the large eigenvalues of the sample covariance matrix are biased
high and the small eigenvalues are biased low — and this phenomenon is accentu-
ated for small samples.

Relative to QDA, a simple method of regularization is to apply LDA even though
the covariance matrices are not equal. This means estimating a single covariance
matrix by pooling the data. This reduces the number of parameters to be estimated
and increases the sample size relative to the smaller set of parameters. Generally,
regularization reduces variance at the cost of bias, and the goal is substantial vari-
ance reduction with negligible bias.

A softer approach than strictly going from QDA to LDA is to shrink the indi-
vidual covariance estimates in the direction of the pooled estimate. This can be
accomplished by introducing a parameter α between 0 and 1 and using the estimates

(31) K̂k(α) =
nk(1− α)K̂k + nαK̂
nk(1− α) + nα

where nk is the number of points corresponding to Y = k, K̂k is the sample
covariance matrix for class k, and K̂ is the pooled estimate of the covariance matrix.
QDA results from α = 0 and LDA from α = 1, with different amounts of shrinkage
occurring for 0 < α < 1 [35]. While reducing variance, one must be prudent in
choosing α, especially when the covariance matrices are very different.

To get more regularization while not overly increasing bias, one can shrink the
regularized sample covariance matrix K̂k(α) towards the identity multiplied by the
average eigenvalue of K̂k(α). This has the effect of decreasing large eigenvalues and
increasing small eigenvalues, thereby offsetting the biasing effect seen in Eq. (30)
[36]. Thus, we consider the estimate

(32) K̂k(α, β) = (1− β)K̂k(α) +
β

n
tr[K̂k(α)]I

where tr[K̂k(α)] is the trace of K̂k(α), I is the identity, and 0 ≤ β ≤ 1. To apply this
regularized discriminant analysis using K̂k(α, β) requires selecting two model pa-
rameters. Model selection is critical to advantageous regularization, and typically is
problematic; nevertheless, simulation results for Gaussian conditional distributions
indicate significant benefit of regularization for various covariance models, and very
little increase in error even in models where it does not appear to help.

16 ULISSES BRAGA-NETO AND EDWARD DOUGHERTY

3.2. Noise Injection. Rather than regularizing the estimated covariance matrix,
one can regularize the data itself by noise injection. This can be done by “spread-
ing” the sample data, by means of synthetic data generated about each sample
point, thereby creating a large synthetic sample from which to design the classifier
while at the same time making the designed classifier less dependent on the specific
points in the small data set. For instance, one may place a circular Gaussian distri-
bution at each sample point, randomly generate points from each distribution, and
then apply a classification rule. Such a Monte-Carlo approach has been examined
relative to LDA [37]. A spherical distribution need not be employed. Indeed, it has
been demonstrated that it can be advantageous to base noise injection at a sample
point based on the nearest neighbors of the point [37]. This kind of noise injection
is not limited to any particular classification rule; however, it can be posed analyt-
ically in terms of matrix operations for linear classification, and this is critical to
situations in which a large number of feature sets must be examined, in particular,
microarray-based classification, where a vast number of potential feature sets are
involved [9].

Noise injection can take a different form in which the sample data points them-
selves are perturbed by additive noise instead of new synthetic points being gener-
ated. This approach has been used in designing neural networks (of which linear
classifiers are a special case), in particular, where owing to a small sample, the same
data points are used repeatedly [38].

3.3. Error Regularization. Rather than considering a single class from which
to choose a classifier, one can consider a sequence of classes, C1, C2, . . ., find the
best classifier in each class according to the data, and then choose among these
according to which class is of appropriate complexity for the sample size. For
instance, one might assume a nested sequence, C1 ⊂ C2 ⊂ . . . The idea is to define
a new measurement that takes into account both the error estimate of a designed
classifier and the complexity of the class from which it has been chosen — the more
complex the class, the larger the penalty. In this vein, we define a new penalized
error that is a sum of the estimated error and a complexity penalty ρ(n),

(33) ε̃n[ψ] = ε̂n[ψ] + ρ(n).

Relative to the constraint sequence {Cj}, structural risk minimization proceeds
by selecting the classifier in each class that minimizes the empirical error over
the sample, and then choosing among these the one possessing minimal penalized
error, where in each case the penalty is relative to the class containing the classifier
[39, 40].

Minimum-description-length complexity regularization replaces error minimiza-
tion by minimization of a sum of entropies, one relative to encoding the error and
the other relative to encoding the classifier description, in an effort to balance in-
creased error and increased model complexity [41, 42]. The MDL approach has been
employed for microarray-based prediction [22, 43].

3.4. Feature Selection. The feature-selection problem is to select a subset of k
features from a set of n features that provides an optimal classifier with minimum
error among all optimal classifiers for subsets of a given size. For instance, for the
large number of expression measurements on a cDNA microarray, it is necessary to
find a small subset with which to classify. The inherent combinatorial nature of the

CLASSIFICATION 17

E[εd,n]

εd

number of variables, d

error

Figure 5. Bayes error and expected error versus number of features.

problem is readily seen from the fact that all k-element subsets must be checked to
assure selection of the optimal k-element feature set [44].

An issue concerning error estimation is monotonicity of the error measure. The
Bayes error is monotone: if A and B are feature sets for which A ⊂ B, then εB ≤ εA,
where εA and εB are the Bayes errors corresponding to A and B, respectively.
However, if εA,n and εB,n are the corresponding errors resulting from designed
classifiers on a sample of size n, then it cannot be asserted that E[εB,n] does not
exceed E[εA,n]. Indeed, it is typical to observe a “peaking phenomenon” for fixed
sample size, whereby the expected error decreases at first and then increases, for
increasingly large feature sets. Thus, monotonicity does not apply for the expected
error. This is illustrated in Fig. 5, where the Bayes error εd and the expected error
E[εd,n] of the designed filter are plotted against the number of variables d. We can
see that εd decreases, whereas E[εd,n] decreases and then increases. We remark that
the peaking phenomenon is referred to by some authors as the Hughes phenomenon
[45, 46]. Note that, were E[εd,n] known, then we could conclude that εd is no worse
than E[εd,n]; however, we have only estimates of the error εd,n, which for small
samples can be above or below εd.

A full exhaustive search can be mitigated by using a branch and bound feature-
selection algorithm that takes advantage of the monotonicity property of the Bayes
error [47]. If A ⊂ B and C is a feature set for which εC ≥ εA, then εC ≥ εB .
In principle, this approach yields an optimal solution; however, it suffers from two
problems. First, worst-case performance can be exponentially complex, thereby
making its use less attractive for very large feature sets; and second, estimation
of the Bayes error must be used and therefore monotonicity is lost, a problem
that is exacerbated by small samples. As is generally true with feature-selection
methods, other criteria besides the Bayes error can be used to select features,
monotonic criteria being necessary for strict application of the branch and bound
algorithm. Even with the loss of monotonicity, the branch-and-bound approach
may still provide good results [48].

When considering a large collection of features, the branch-and-bound technique
is not sufficiently computationally efficient and suboptimal approaches need to be

18 ULISSES BRAGA-NETO AND EDWARD DOUGHERTY

considered. The most obvious approach is to consider each feature by itself and
choose the k features that perform individually the best. While easy, this method is
subject to choosing a feature set with a large number of redundant features, thereby
obtaining a feature set that is much worse than the optimal. Moreover, features
that perform poorly individually may do well in combination with other features
[9].

Perhaps the most common approach to suboptimal feature selection is sequen-
tial selection, either forward or backward, and their variants. Forward selection
begins with a small set of features, perhaps one, and iteratively builds the feature
set. Backward selection starts with a large set and iteratively reduces it. Owing
to simpler calculations, forward selection is generally faster, and we will restrict
our attention to it, noting that analogous comments apply to backwards selection.
Here again, monotonicity issues and the “peaking” phenomenon arise: adjoining
variables stepwise to the feature vector decreases the Bayes error but can increase
errors of the designed filters.

Being more precise relative to forward selection, if A is the feature set at a
particular stage of the algorithm and Q is the full set of potential features, then all
sets of the form A ∪ {X} are considered, with X ∈ Q − A, and the feature X is
adjoined to A if it is the one for which the error ε[A∪{X}] is minimal. An obvious
problem is that once a feature is in the growing feature set, it cannot be removed.
This problem can be handled by adjoining two or more features by considering sets
of the form A ∪ B, where B is a subset of Q − A possessing b features, and then
deleting features by considering sets of the form A ∪ B0 − C, where B0 has been
chosen on the adjoining part of the iteration and C is a subset of A∪B0 possessing
c < b features. At each stage of the iteration the feature set is grown by b − c
features. While growing by adjoin-delete iterations is superior to just adjoining,
there is still inflexibility owing to the a priori choices of b and c. Flexibility can
be added to sequential forward selection by considering sequential forward floating
selection (SFFS), where the number of features to be adjoined and deleted is not
fixed, but is allowed to “float” [49].

When there is a large number of potential random variables for classification,
feature selection is problematic and the best method to use depends on the circum-
stances. Evaluation of methods is generally comparative and based on simulations
[50].

3.5. Feature Extraction. Rather than reduce dimensionality by selecting from
the original features, one might take the approach of feature extraction, where a
transform is applied to the original features to map them into a lower dimensional
space. Since the new features involve a transform of the original features, the
original features remain (although some may be eliminated by compression) and are
still part of the classification process. A disadvantage of feature extraction is that
the new features lack the physical meaning of the original features – for instance,
gene-expression levels. A potential advantage of feature extraction is that, given
the same number of reduced features, the transform features may provide better
classification than selected individual features. Perhaps the most common form of
feature extraction is principal component analysis (PCA).

Consider the (random) observation vector X = (X1, X2,. . . , Xn), where the ob-
servations have been normalized to have zero means. Since the covariance matrix

CLASSIFICATION 19

K is symmetric, if λ1and λ2are distinct eigenvalues, then their respective eigen-
vectors will be orthogonal and the desired orthonormal eigenvectors can be found
by dividing each by its own magnitude. On the other hand, if an eigenvalue has
repeated eigenvectors, then these will be linearly independent and an algebraically
equivalent set can be found by the Gram-Schmidt orthogonalization procedure.

According to the Karhunen-Loeve theorem, if the vectors u1, u2,..., un are the
orthonormalized eigenvectors of K corresponding to the eigenvalues λ1 ≥ λ2 ≥
. . . ≥ λn, then

(34) X =
n∑

i=1

Ziui

where Z1, Z2,..., Zn are uncorrelated and given by Zi = X · ūi. The values Z1,
Z2,..., Zn are called the principal components for X. For m < n, data compression
is achieved by approximating X by

(35) Xm =
m∑

i=1

Ziui

The mean-square error between X and Xm is given by

(36) E[X,Xm] =
n∑

k=1

E[|Xk −Xm,k|2]

where the components of Xm are Xm,1, Xm,2,..., Xm,n. It can be shown that

(37) E[X,Xm] =
n∑

k=m+1

λk

Since the eigenvalues are decreasing with increasing k, the error is minimized by
keeping the first m terms. To apply PCA for the purposes of feature extraction,
Z1, Z2, . . . , Zm are employed.

4. Error Estimation

Error estimation is key aspect of classification, as it impacts both classifier design
and variable selection. Recall that the performance measure of a designed classifier
is the “true” error εn, whereas the performance measure of a classification rule (for
fixed sample size n) is the expected error E[εn]. However, both these quantities
can only be computed exactly if one knows the feature-label distribution for the
classification problem. Since in practice such knowledge is rarely, if ever, at hand,
one needs to estimate the true error from the available sample data.

An error estimator ε̂n may be a deterministic function of the sample data Sn,
in which case it is a non-randomized error estimator. Such an error estimator is
random only through the random sample. Among popular non-randomized error
estimators, we have resubstitution, leave-one-out, and fixed-fold cross-validation.
By contrast, randomized error estimators have “internal” random factors that affect
their outcome. Popular randomized error estimators include random-fold cross-
validation and all bootstrap error estimators (all aforementioned error estimators
will be discussed in detail below).

A key feature that often dictates the performance of an error estimator is its
variance, especially in small-sample settings. The internal variance of an error
estimator is the variance due only to its internal random factors, Vint = Var(ε̂n|Sn).

20 ULISSES BRAGA-NETO AND EDWARD DOUGHERTY

This variance is zero for non-randomized error estimators. The full variance Var(ε̂n)
of the error estimator is the one we are really concerned about, since it takes into
account the uncertainty introduced by the random sample data. Using the well-
known conditional-variance formula, Var(X) = E[Var(X|Y)] + Var(E[X|Y]) [51],
one can break down Var(ε̂n) as:

(38) Var(ε̂n) = E[Vint] + Var(E[ε̂n|Sn]).
The second term on the right-hand side is the one that includes the variability
due to the random sample. Note that, for non-randomized ε̂n, we have Vint = 0
and E[ε̂n|Sn] = ε̂n. For randomized error estimators, the first term on the right-
hand side has to be made small through intensive computation, in order to achieve
small overall estimator variance. This is one of the reasons why randomized error
estimators are typically very inefficient computationally, as we will see below.

4.1. Holdout Estimation. We now proceed to discuss specific error estimation
techniques. If there is an abundance of sample data, then it can be split into
training data and test data. A classifier is designed on the training data, and its
estimated error is the proportion of errors it makes on the test data. We denote
this test-data error estimate by ε̂n,m, where m is the number of sample pairs in
the test data. Since the test data is random and independent from the training
data, this is a randomized error estimator. It is unbiased in the sense that, given
the training data Sn, E[ε̂n,m|Sn] = εn, and thus E[ε̂n,m] = E[εn]. The internal
variance of this estimator can be bounded as follows [19]:

(39) Vint = E[(ε̂n,m − εn)2|Sn] ≤ 1
4m

which tends to zero as m → ∞. Moreover, by using (38), we get that the full
variance of the holdout estimator is simply

(40) Var(ε̂n,m) = E[Vint] + Var[εn].

Thus, provided that m is large, so that Vint is small (this is guaranteed by (39) for
large enough m), the variance of the holdout estimator is approximately equal to
the variance of the true error itself, which is typically small, provided n is not too
small.

The problem with using both training and test data is that, in practice, one
often does not usually have available a large enough data set to be able to make
both n and m large enough. For example, in order to get the standard-deviation
bound in Eq. (39) down to an acceptable level, say 0.05, it would be necessary to
use 100 test samples. On the other hand, data sets that contain fewer than 100
overall samples are quite common. Therefore, for a large class of practical problems
where samples are at a premium, holdout error estimation is effectively ruled out.
In such cases, one must use the same data for training and testing.

4.2. Resubstitution. One approach is to use all sample data to design a classifier
ψn, and estimate εn by applying ψn to the same data. The resubstitution estimate,
ε̂R
n, is the fraction of errors made by ψn on the training data:

(41) ε̂R

n =
1
n

n∑

i=1

|Yi − ψn(Xi)|

CLASSIFICATION 21

This is none other than the apparent error rate mentioned in Section 2.3. Resub-
stitution is usually biased low, meaning E[ε̂R

n] ≤ E[εn] — but not always. For
fixed-partition histogram rules, meaning those that are independent of the sample
size and the data, the resubstitution error estimate is biased low and its variance is
bounded in terms of the sample size by Var[ε̂R

n] ≤ 1/n. For small samples, the bias
can be severe. It typically improves for large samples. Indeed, for fixed-partition
histogram rules, E[ε̂R

n] is monotonically increasing. The mean-square error for re-
substitution error estimation for a fixed-partition histogram rule having at most q
cells possesses the bound [19]:

(42) E[|ε̂R

n − εn|2] ≤ 6q
n
.

4.3. Cross-validation. With cross-validation, classifiers are designed from parts
of the sample, each is tested on the remaining data, and εn is estimated by averaging
the errors. In k-fold cross-validation, Sn is partitioned into k folds S(i), for i= 1,
2,. . . , k, where for simplicity we assume that k divides n. Each fold is left out of
the design process and used as a test set, and the estimate is the overall proportion
of errors committed on all folds:

(43) ε̂CV

n,k =
1
n

k∑

i=1

n/k∑

j=1

|Y (i)
j − ψn,i(X

(i)
j)|

where ψn,i is designed on Sn − S(i) and (X(i)
j , Y

(i)
j) is a sample point in S(i).

Picking the folds randomly leads to random-fold cross-validation. On the other
hand, pre-selecting which parts of the sample go into each fold leads to fixed-fold
cross-validation, a non-randomized error estimator. The process may be repeated,
where several cross-validated estimates are computed, using different partitions of
the data into folds, and the results averaged. In stratified cross-validation, the
classes are represented in each fold in the same proportion as in the original data.
A k-fold cross-validation estimator is unbiased as an estimator of E[εn−n/k], i.e.,
E[ε̂CV

n,k] = E[εn−n/k].
A leave-one-out estimator is an n-fold cross-validated estimator. A single obser-

vation is left out, n classifiers are designed from sample subsets formed by leaving
out one sample pair, each is applied to the left-out pair, and the estimator ε̂CV

n

is 1/n times the number of errors made by the n classifiers (where for notational
ease we write ε̂CV

n instead of ε̂CV
n,n). Note that both fixed-n-fold and random-n-

fold cross-validated estimators coincide with the same non-randomized leave-one-
out estimator. The estimator ε̂CV

n is unbiased as an estimator of E[εn−1], i.e.,
E[ε̂CV

n] = E[εn−1]. A key concern is the variance of the estimator for small n
[13]. Performance depends on the classification rule. The mean-square error for
leave-one-out error estimation for a fixed-partition histogram rule possesses the
bound [19]:

(44) E[|ε̂CV

n − εn|2] ≤ 1 + 6e−1

n
+

6√
π(n− 1)

Comparing Eqs. (42) and (44), we can see that
√
n− 1 for leave-one-out estimation

as opposed to n in the denominator for resubstitution shows greater variance for
leave-one-out, for fixed-partition histogram rules.

22 ULISSES BRAGA-NETO AND EDWARD DOUGHERTY

To appreciate the difficulties inherent in the leave-one-out bounds, we will sim-
plify them in a way that makes them more favorable to precise estimation. The
performance of ε̂CV

n guaranteed by Eq. (44) becomes better if we lower the bound. A
lower bound than the one in Eq. (44) is 1.8/

√
n− 1. Even for this better standard-

deviation bound, the numbers one gets for n = 50 and 100 still exceed 0.5 and
0.435, respectively. So the bound is essentially useless for small samples.

4.4. Bootstrap. The bootstrap methodology is a general resampling strategy that
can be applied to error estimation [52]. It is based on the notion of an empirical
distribution F ∗, which serves as a replacement to the original unknown feature-label
distribution F . The empirical distribution is discrete, putting mass 1

n on each of
the n available data points. A bootstrap sample S∗n from F ∗ consists of n equally-
likely draws with replacement from the original sample Sn. Hence, some points
may appear multiple times, whereas others may not appear at all. The probability
that a given point will not appear in S∗n is (1−1/n)n ≈ e−1. Therefore, a bootstrap
sample of size n contains on average (1 − e−1)n ≈ (0.632)n of the original points.
The basic bootstrap error estimator is the bootstrap zero estimator [53], which is
defined by

(45) ε̂BZ

n = EF∗ [|Y − ψ∗n(X)| : (X, Y) ∈ Sn − S∗n]

where Sn is fixed. The classifier ψ∗n is designed on the bootstrap sample and tested
on the points that are left out. In practice, the expectation is approximated by a
sample mean based on B independent replicates, S∗n,b, b = 1, 2,. . . , B:

(46) ε̂BZ

n =

B∑
b=1

n∑
i=1

|Yi − ψ∗n.b(Xi)|I(Xi,Yi)∈Sn−S∗n,b

B∑
b=1

n∑
i=1

I(Xi,Yi)∈Sn−S∗n,b

The bootstrap zero estimator is clearly a randomized error estimator. In order
to keep the internal variance low, and thus achieve a small overall variance, a
large enough number B of bootstrap samples must be employed. In the literature,
B between 25 and 200 has been recommended. In addition, a variance-reducing
technique is often employed, called balanced bootstrap resampling [54], according
to which each sample point is made to appear exactly B times in the computation.

The bootstrap zero estimator tends to be a high-biased estimator of E[εn], since
the number of points available for design is on average only 0.632n. The .632
bootstrap estimator tries to correct this bias by doing a weighted average of the
zero and resubstitution estimators [53]:

(47) ε̂B632
n = (1− 0.632) ε̂R

n + 0.632 ε̂BZ

n

On the other hand, the bias-corrected bootstrap estimator tries to correct for
resubstitution bias. It is defined by

(48) ε̂BBC

n = ε̂R

n +
1
B

B∑

b=1

n∑

i=1

(
1
n
− P ∗i,b

)
|Yi − ψ∗n,b(Xi)|

where P ∗i,b is the proportion of times that (Xi, Yi) appears in the bootstrap sample
S∗n,b. This estimator adds to the resubstitution estimator the bootstrap estimate
of its bias.

CLASSIFICATION 23

4.5. Bolstering. A quick calculation reveals that the resubstitution estimator is
given by

(49) ε̂R

n = EF∗ [|Y − ψn(X)|],
where F ∗ is the empirical feature-label distribution. Relative to F ∗, no distinction
is made between points near or far from the decision boundary. If one spreads
the probability mass at each point of the empirical distribution, then variation is
reduced because points near the decision boundary will have more mass on the
other side than will points far from the decision boundary. Hence, more confidence
is attributed to points far from the decision boundary than to points near it.

To take advantage of this observation, consider a probability density function
f♦i , for i = 1, 2,. . . , n, called a bolstering kernel , and define the bolstered empirical
distribution F♦, with probability density function given by:

(50) f♦(x) =
1
n

n∑

i=1

f♦i (x− xi)

The bolstered resubstitution estimator [55] is obtained by replacing F* by F♦ in
Eq. (49):

(51) ε̂♦R

n = EF♦ [|Y − ψn(X)|].
Bolstering may actually be applied to any error-counting estimation procedure;

for example, one can define a bolstered leave-one-out estimator [55]. However, in
what follows, we focus for the most part on the bolstered resubstitution case.

The following is a computational expression, equivalent to (51), for the bolstered
resubstitution estimator:

(52) ε̂♦R

n =
1
n

n∑

i=1

(
Iyi=0

∫

A1

f♦i (x− xi) dx + Iyi=1

∫

A0

f♦i (x− xi) dx
)
.

The integrals are the error contributions made by the data points, according to
whether yi = 0 or yi = 1. The bolstered resubstitution estimate is equal to the
sum of all error contributions divided by the number of points. If the classifier
is linear, then the decision boundary is a hyperplane and it is usually possible to
find analytical expressions for the integrals, for instance, for Gaussian bolstering;
otherwise, Monte-Carlo integration can be employed, and experience shows that
very few Monte-Carlo samples are necessary. See Fig. 6 for an illustration, where
the classifier is linear and the bolstering kernels are uniform circular distributions
(note that the bolstering kernels need not have the same variance). The samples
in this example correspond to a subset of the cancer data used in Section 2.5 (the
linear classifier is Fig. 6 was obtained via LDA).

A key issue is choosing the amount of bolstering, i.e., the kernel variances. Since
the purpose of bolstering is to improve error estimation in the small-sample setting,
we do no want to use bolstering kernels that require complicated inferences. Hence,
we consider zero-mean, spherical bolstering kernels with covariance matrices of the
form σiI. The choice of the parameters σ1, σ2,. . . , σn determines the variance and
bias properties of the corresponding bolstered estimator. If σ1 = σ2 = . . . = σn = 0,
then there is no bolstering and the bolstered estimator reduces to the original
estimator. As a general rule, larger σi lead to lower-variance estimators, but after
a certain point this advantage is offset by increasing bias.

24 ULISSES BRAGA-NETO AND EDWARD DOUGHERTY

Figure 6. Bolstered resubstitution for linear classification, as-
suming uniform circular bolstering kernels. The bolstered resubsti-
tution error is the sum of all contributions (shaded areas) divided
by the number of points.

We wish to select σ1, σ2,. . . , σn to make the bolstered resubstitution estimator
nearly unbiased. One can think of (X, Y) in Eq. (1) as a random test point. Given
Y = k, this test point is at a “mean distance” δk from the data points belonging to
class k, for k = 1, 2. Resubstitution tends to be optimistically biased because the
test points in (41) are all at distance zero from the training data. Since bolstered
resubstitution spreads the test points, the task is to find the amount of spreading
that makes the test points to be as close as possible to the true mean distance to
the training data points.

The mean distance δk can be approximated by the sample-based estimate

(53) δ̂k =
∑n
i=1 minj 6=i{||xi − xj ||}Iyi=k∑n

i=1 Iyi=k

This estimate is the mean minimum distance between points belonging to class
Y = k.

Rather than estimating a separate bolstering kernel standard deviation for each
sample point, we propose to compute two distinct standard deviations τ1 and τ2,
one for each class, based on the mean-distance estimates δ1 and δ2 (this limits
the complexity of the estimation problem, which is advantageous in small-sample
settings). Thus, we let σi = τk, for yi = k. To arrive at estimates for τ1 and
τ2, let D be the random variable giving the distance to the origin of a randomly
selected point from a unit-variance bolstering kernel, and let FD be the probability
distribution function for D. In the case of a bolstering kernel of standard deviation
τk, all distances get multiplied by τk, so if D′ is the distance random variable for
this more general case, then FD′(x) = FD(x/τk). For the class Y = k, the value of
τk is to be chosen so that the median distance of a random test point to the origin
of the bolstering kernel of standard deviation τk is equal to the mean-distance δ̂k,
the result being that half of the test points will be farther from the origin than δ̂k,

CLASSIFICATION 25

and the other half will be closer. A little reflection shows that τk is the solution
of the equation F−1

D′ (0.5) = τkF
−1
D (0.5) = δ̂k, so that the final estimated standard

deviations for the bolstering kernels are given by

(54) σi =
δ̂k

F−1
D (0.5)

, for yi = k.

Note that, as the number of samples in the sample increases, δ̂k decreases, and
therefore so does σi. This is the expected behavior in this case, since plain resub-
stitution tends to be less biased as the number of samples increases. Note also that
the denominator F−1

D (0.5) may be viewed as a constant dimensionality correction
factor (being a function of the number of dimensions through D), which can be
precomputed and stored off-line.

We mention that, when resubstitution is heavily low-biased, it may not be a
good idea to spread incorrectly classified data points, as that increases optimism
of the error estimator (low bias). Bias is reduced by letting σi = 0 (no bolstering)
for incorrectly classified points. The resulting estimator is called the semi-bolstered
resubstitution estimator [55].

4.6. Error Estimation Performance. We now illustrate the small-sample per-
formance of several of the error estimators discussed in the previous subsections by
means of simulation experiments based on synthetic data (see also [13, 55]). We con-
sider resubstitution (resub), leave-one-out (loo), stratified 10-fold cross-validation
with 10 repetitions (cv10r), the balanced .632 bootstrap (b632), Gaussian bolstered
resubstitution (bresub), Gaussian semi-bolstered resubstitution (sresub) and Gauss-
ian bolstered leave-one-out (bloo). The number of bootstrap samples is B = 100,
which makes the number of designed classifiers be the same as for cv10r. We em-
ploy three classification rules (in order of complexity: LDA, 3NN, and CART. For
LDA, the bolstered estimators are computed using analytical formulas developed in
[55]; for 3NN and CART, Monte-Carlo sampling is used — we have found that only
M = 10 Monte-Carlo samples per bolstering kernel is adequate, and increasing M
to a larger value reduces the variance of the estimators only slightly.

The experiments assess the empirical distribution of εn − ε̂n for each error es-
timator ε̂n. This distribution measures the difference between the true error and
the estimated error of the designed classifier. Deviation distributions are from
1000 independent data sets drawn from several models. The synthetic model for
LDA consists of spherical Gaussian class-conditional densities with means located
at (δ, δ, . . . , δ) and (−δ,−δ, . . . ,−δ), where δ > 0 is a separation parameter that
controls the Bayes error. The synthetic model for 3NN and CART corresponds to
class-conditional densities given by a mixture of spherical Gaussians, with means
at opposing vertices of a hypercube centered at the origin and side 2δ. For in-
stance, for d = 5, the class-conditional density for class 0 has means at (δ, δ, δ, δ, δ)
and (−δ,−δ,−δ, δ,−δ), and the class-conditional density for class 1 has means at
(δ,−δ, δ,−δ, δ) and (−δ, δ,−δ, δ,−δ). In all cases, there are equal a priori class
probabilities.

Table 4.6 lists the parameters for the twelve experiments considered in this study,
corresponding to choices among the three classification rules, for various separations
δ between the class means, low or moderate dimensionality d, and equal or distinct
standard deviations σ1 and σ2 for the class-conditional densities. The parameters
were chosen so as to give Bayes error about 0.1 in half of the cases and about 0.2 in

26 ULISSES BRAGA-NETO AND EDWARD DOUGHERTY

the other half. These are difficult models, with considerable overlapping between
the classes (even in the cases where the Bayes error is 0.1) owing to large discrepancy
in variance between the classes, not to actual separation between the means.

Experiment Rule d δ σ1 σ2 Bayes error

1 LDA 2 0.59 1.00 1.00 0.202
2 LDA 2 0.59 1.00 4.00 0.103
3 LDA 5 0.37 1.00 1.00 0.204
4 LDA 5 0.37 1.00 2.16 0.103

5 3NN 2 1.20 1.00 1.00 0.204
6 3NN 2 1.20 1.00 5.20 0.103
7 3NN 5 0.77 1.00 1.00 0.204
8 3NN 5 0.77 1.00 2.35 0.105

9 CART 2 1.20 1.00 1.00 0.204
10 CART 2 1.20 1.00 5.20 0.103
11 CART 5 0.77 1.00 1.00 0.204
12 CART 5 0.77 1.00 2.35 0.105

Table 1. Twelve experiments used in the simulation study

Plots of beta-density fits of the empirical deviation distribution for sample size
n = 20 are displayed in Figs. 7–9 (see [55] and its companion website for the
complete results of this simulation study). Note that the narrower and taller the
distribution, the smaller the variance of the deviation, whereas the closer its mean
is to the vertical axis, the more unbiased the error estimator is. We can see that
resubstitution, leave-one-out, and even 10-fold cross-validation are generally out-
performed by the bootstrap and bolstered estimators. Bolstered resubstitution is
very competitive with the bootstrap, in some cases outperforming it. For LDA, the
best estimator overall is bolstered resubstitution. For 3NN and CART, which are
classifiers known to overfit in small-sample settings, the situation is not so clear.
For 3NN, we can see that bolstered resubstitution fails in correcting the bias of
resubstitution for d = 5, despite having small variance (note that it is still the best
overall estimator for 3NN in Experiment 5). For CART, the bootstrap estimator
is affected by the extreme low-biasedness of resubstitution. In this case, bolstered
resubstitution performs much better than in the 3NN case, but the best overall esti-
mator is the semi-bolstered resubstitution. The bolstered leave-one-out is generally
much more variable than the bolstered resubstitution estimators, but it displays
much less bias.

Computation time can be critical. We have found that resubstitution is by far
the fastest estimator, with its bolstered versions coming just behind. Leave-one-out,
and its bolstered version, are fast for a small number of samples, but performance
quickly degrades with an increasing number of samples. The 10-fold cross-validation
and the bootstrap estimator are the slowest estimators. Bolstered resubstitution
can be hundreds of times faster than the bootstrap estimator (see [55] for a listing
of timings).

We close this subsection with a comment on error estimation and the measure-
ment of feature-set performance. Given a large number of potential feature sets,

CLASSIFICATION 27

Experiment 1 Experiment 2

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

Experiment 3 Experiment 4

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

resub loo cv10r b632 bresub sresub bloo

Figure 7. Beta fits to empirical deviation distribution, for LDA
and n = 20.

one may wish to rank them according to the performances of their optimal classi-
fiers, which in practice means the performances of their designed classifiers. This
requires estimating the true errors of the various feature-set classifiers. It is not
uncommon for this ranking to be done by cross-validation. Resubstitution is usu-
ally rejected for this task on account of its typical bias, even though there can be
enormous computational savings, especially when one is considering thousands of
feature sets. However, there is evidence that, for top-performing feature sets (the
only ones in which we are actually interested), the ranking accuracies of resub-
stitution and cross-validation, in comparison to the true ranking, are essentially
equivalent [56].

References

[1] A. Ben-Dor, L. Bruhn, N. Friedman, I. Nachman, M. Schummer, Z. Yakhini, Tissue classifi-
cation with gene expression profiles, Computational Biology 7 (2000) 559–583.

[2] M. Bittner, P. Meltzer, Y. Chen, Y. Jiang, E. Seftor, M. Hendrix, M. Radmacher, R. Simon,
Z. Yakhini, A. Ben-Dor, N. Sampas, E. Dougherty, E. Wang, F. Marincola, C. Gooden,
J. Lueders, A. Glatfelter, P. Pollock, J. Carpten, E. Gillanders, D. Leja, K. Dietrich,

28 ULISSES BRAGA-NETO AND EDWARD DOUGHERTY

Experiment 5 Experiment 6

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Experiment 7 Experiment 8

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

resub loo cv10r b632 bresub sresub bloo

Figure 8. Beta fits to empirical deviation distribution, for 3NN
and n = 20.

C. Beaudry, M. Berens, D. Alberts, V. Sondak, N. Hayward, J. Trent, Molecular classifi-
cation of cutaneous malignant melanoma by gene expression profiling, Nature 406 (2000)
536–540.

[3] G. Callagy, E. Cattaneo, Y. Daigo, L. Happerfield, L. Bobrow, P. Pharoah, C. Caldas, Molec-
ular classification of breast carcinomas using tissue microarrays, Diagn. Mol. Pathol. 12 (1)
(2003) 27–34.

[4] L. Dyrskjot, T. Thykjaer, M. Kruhoffer, , J. Jensen, N. Marcussen, S. Hamilton-Dutoit,
H. Wolf, T. Orntoft, Identifying distinct classes of bladder carcinoma using microarrays,
Nature Genetics 33 (1) (2003) 90–96.

[5] T. Furey, N. Cristianini, N. Duffy, D. Bednarski, M. Schummer, D. Haussler, Support vector
machine classification and validation of cancer tissue samples using microarray expression
data, Bioinformatics 16 (10) (2000) 906–914.

[6] T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov, H. Coller, M. Loh,
J. Downing, M. Caligiuri, C. Bloomfield, E. Lander, Molecular classification of cancer: class
discovery and class prediction by gene expression monitoring, Science 286 (1999) 531–537.

[7] I. Hedenfalk, D. Dugan, Y. Chen, M. Radmacher, M. Bittner, R. Simon, P. Meltzer,
B. Gusterson, M. Esteller, M. Raffeld, Z. Yakhini, A. Ben-Dor, E. R. Dougherty, J. Kononen,
L. Bubendorf, W. Fehrle, S. Pittaluga, S. Gruvberger, N. Loman, O. Johannsson, H. Ols-
son, B. Wilfond, G. Sauter, O.-P. Kallioniemi, A. Borg, J. Trent, Gene-expression profiles in
hereditary breast cancer, The New England Journal of Medicine 344 (8) (2001) 539–548.

CLASSIFICATION 29

Experiment 9 Experiment 10

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Experiment 11 Experiment 12

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

resub loo cv10r b632 bresub sresub bloo

Figure 9. Beta fits to empirical deviation distribution, for CART
and n = 20.

[8] J. Khan, J. Wei, M. Ringner, L. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab,
C. Antonescu, C. Peterson, P. Meltzer, Classification and diagnostic prediction of cancers
using gene expression profiling and artificial neural networks, Nature Medicine 7 (2001) 673–
679.

[9] S. Kim, E. Dougherty, I. Shmulevich, K. Hess, S. Hamilton, J. Trent, G. Fuller, W. Zhang,
Identification of combination gene sets for glioma classification, Molecular Cancer Therapy 1
(2002) 1229–1236.

[10] T. Kobayashi, M. Yamaguchi, S. Kim, J. Morikawa, S. Ogawa, S. Ueno, E. Suh, E. Dougherty,
I. Shmulevich, H. Shiku, W. Zhang, Microarray reveals differences in both tumors and vascular
specific gene expression in de novo cd5+ and cd5- diffuse large b-cell lymphomas, Cancer
Research 63 (2003) 60–66.

[11] A. Levenson, I. Kliakhandler, K. Svoboda, K. Pease, S. Kaiser, r. Ward, J.E, V. Jordan,
Molecular classification of selective oestrogen receptor modulators on the basis of gene ex-
pression profiles of breast cancer cells expressing oestrogen receptor alpha, Br. J. Cancer
87 (4) (2002) 449–456.

[12] A. Szabo, K. Boucher, W. Carroll, L. Klebanov, A. Tsodikov, A. Yakovlev, Variable selection
and pattern recognition with gene expression data generated by the microarray technology,
Mathematical Biosciences 176 (1) (2002) 71–98.

[13] U. Braga-Neto, E. Dougherty, Is cross-validation valid for microarray classification?, Bioin-
formatics 20 (3) (2004) 374–380.

30 ULISSES BRAGA-NETO AND EDWARD DOUGHERTY

[14] E. Dougherty, Small sample issues for microarray-based classification, Comparative and Func-
tional Genomics 2 (2001) 28–34.

[15] M. van de Vijver, Y. He, L. van’t Veer, H. Dai, A. Hart, D. Voskuil, G. Schreiber, J. Peterse,
C. Roberts, M. Marton, M. Parrish, D. Astma, A. Witteveen, A. Glas, L. Delahaye, T. van
der Velde, H. Bartelink, S. Rodenhuis, E. Rutgers, S. Friend, R. Bernards, A gene-expression
signature as a predictor of survival in breast cancer, The New England Journal of Medicine
347 (25) (2002) 1999–2009.

[16] V. Vapnik, A. Chervonenkis, On the uniform convergence of relative frequencies of events to
their probabilities, Probability and its Applications 16 (1971) 264–280.

[17] E. Baum, On the capabilities of multilayer perceptrons, Complexity 4 (1988) 193–215.
[18] L. Gordon, R. Olshen, Asymptotically efficient solutions to the classification problem, Annals

of Statistics 6 (1978) 525–533.
[19] L. Devroye, L. Gyorfi, G. Lugosi, A Probabilistic Theory of Pattern Recognition, Springer,

New York, 1996.
[20] E. Dougherty, M. Bittner, Y. Chen, S. Kim, K. Sivakumar, J. Barrera, P. Meltzer, J. Trent,

Nonlinear filters in genomic control, in: Proceedings of the IEEE-EURASIP Workshop on
Nonlinear Signal and Image Processing, Antalya, Turkey, 1999.

[21] S. Kim, E. Dougherty, M. Bittner, Y. Chen, K. Sivakumar, P. Meltzer, J. Trent, A general
framework for the analysis of multivariate gene interaction via expression arrays, Biomedical
Optics 5 (4) (2000) 411–424.

[22] I. Tabus, J. Astola, On the use of mdl principle in gene expression prediction, Journal of
Applied Signal Processing 2001 (4) (2001) 297–303.

[23] S. Kauffman, The Origins of Order: Self-Organization and Selection in Evolution, Oxford
University Press, 1993.

[24] I. Schmulevich, E. Dougherty, W. Zhang, From Boolean to probabilistic Boolean networks as
models of genetic regulatory networks, Proceedings of the IEEE 90 (2002) 1778–1792.

[25] X. Zhou, X. Wang, E. Dougherty, Binarization of microarray data based on a mixture model,
Molecular Cancer Therapeutics 2 (7) (2003) 679–684.

[26] I. Shmulevich, W. Zhang, Binary analysis and optimization-based normalization of gene
expression data, Bioinformatics 18 (4) (2002) 555–565.

[27] T. Cover, P. Hart, Nearest-neighbor pattern classification, IEEE Trans. on Information The-
ory 13 (1967) 21–27.

[28] C. Stone, Consistent nonparametric regression, Annals of Statistics 5 (1977) 595–645.
[29] V. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.
[30] P. Wald, R. Kronmal, Discriminant functions when covariances are unequal and sample sizes

are moderate, Biometrics 33 (1977) 479–484.
[31] A. Farago, G. Lugosi, Strong universal consistency of neural network classifiers, IEEE Trans.

on Information Theory 39 (1993) 1146–1151.
[32] C. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, New York,

1995.
[33] L. van’t Veer, H. Dai, M. van de Vijver, Y. He, A. Hart, M. Mao, H. Peterse, K. van der Kooy,

M. Marton, A. Witteveen, G. Schreiber, R. Kerkhoven, C. Roberts, P. Linsley, R. Bernards,
S. Friend, Gene expression profiling predicts clinical outcome of breast cancer, Nature 415
(2002) 530–536.

[34] A. Izenman, Recent developments in nonparametric density estimation, Journal of the Amer-
ican Statistical Association 86 (413) (1991) 205–224.

[35] D. Titterington, Common structure of smoothing techniques in statistics, International Sta-
tistical Review 53 (1985) 141–170.

[36] J. Friedman, Regularized discriminant analysis, Journal of the American Statistical Associa-
tion 84 (405) (1989) 165–175.

[37] M. Skurichina, R. Duin, S. Raudys, K-nearest neighbours noise injection in multilayer per-
ceptron training, IEEE Trans. on Neural Networks 11 (2) (2000) 504–511.

[38] J. Sietsma, R. Dow, Neural network pruning — why and how, in: Proc. IEEE International
Conference on Neural Networks I, 1988, pp. 325–333.

[39] V. Vapnik, A. Chervonenkis, Theory of Pattern Recognition, Nauka, Moscow, 1974.
[40] V. Vapnik, Estimation of Dependencies Based on Empirical Data, Springer-Verlag, New York,

1982.

CLASSIFICATION 31

[41] A. Kolmogorov, Three approaches to the quantitative definition of information, Probl. Ped-
erach. Inform. 1 (1965) 3–11.

[42] J. Rissanen, Stochastic complexity and modeling, Annals of Statistics 14 (1986) 1080–1100.
[43] I. Tabus, J. Rissanen, J. Astola, Classification and feature gene selection using the normalized

maximum likelihood model for discrete regression, Signal Processing 83 (4) (2003) 713–727,
special issue on Genomic Signal Processing.

[44] T. Cover, J. van Campenhout, On the possible orderings in the measurement selection prob-
lem, IEEE Trans. on Systems, Man, and Cybernetics 7 (1977) 657–661.

[45] A. Jain, B. Chandrasekaran, Dimensionality and sample size considerations in pattern recog-
nition practice, in: P. Krishnaiah, L. Kanal (Eds.), Classification, Pattern Recognition and
Reduction of Dimensionality, Vol. 2 of Handbook of Statistics, North-Holland, Amsterdam,
1982, Ch. 39, pp. 835–856.

[46] G. Hughes, On the mean accuracy of statistical pattern recognizers, IEEE Trans. on Infor-
mation Theory 14 (1968) 55–63.

[47] P. Narendra, K. Fukunaga, A branch and bound algorithm for feature subset selection, IEEE
Trans. on Computers 26 (9) (1977) 917–922.

[48] Y. Hamamoto, S. Uchimura, Y. Matsunra, T. Kanaoka, S. Tomita, Evaluation of the branch
and bound algorithm for feature selection, Pattern Recognition Letters 11 (1990) 453–456.

[49] P. Pudil, J. Novovicova, J. Kittler, Floating search methods in feature selection, Pattern
Recognition Letters 15 (1994) 1119–1125.

[50] A. Jain, D. Zongker, Feature selection: Evaluation, application, and small sample perfor-
mance, IEEE Trans. on Pattern Analysis and Machine Intelligence 19 (2) (1997) 153–158.

[51] S. Ross, A first course in probability, 4th Edition, Macmillan, New York, 1994.
[52] B. Efron, The Jacknife, The Bootstrap, and Other Resampling Plans, SIAM NSF-CBMS,

1982, monograph #38.
[53] B. Efron, Estimating the error rate of a prediction rule: Improvement on cross-validation,

Journal of the American Statistical Association 78 (382) (1983) 316–331.
[54] M. Chernick, Bootstrap Methods: A Practitioner’s Guide, John Wiley & Sons, New York,

NY, 1999.
[55] U. Braga-Neto, E. Dougherty, Bolstered error estimation, Pattern Recognition, 37 (6) (2004)

1267–1281.
[56] U. Braga-Neto, R. Hashimoto, E. Dougherty, D. Nguyen, R. Carroll, Is cross-validation better

than resubstitution for ranking genes?, Bioinformatics 20 (2) (2004) 253–258.

(U. Braga-Neto) Section of Clinical Cancer Genetics, UT MD Anderson Cancer Cen-
ter, Houston, TX, and Department of Electrical Engineering, Texas A&M University,
College Station, TX, ubraga@mdanderson.org

(E. Dougherty) Department of Pathology, UT MD Anderson Cancer Center, Hous-
ton, TX, and Department of Electrical Engineering, Texas A&M University, College
Station, TX, edward@ee.tamu.edu

