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Genomic Signal Processing

S
ignal processing has played a 
major auxiliary role in medicine 
via the array of technologies 
available to physicians. Only a 
rapidly diminishing proportion 

of the population can recall medicine 
without computer tomography, magnetic 
resonance imaging, and ultrasound. In 
this capacity, signal processing serves only 
a supporting function. The future will be 
different. Like a factory, regulatory logic 
defines the cell as an operational system 
[1]: “The roles of regulatory logic in the 
factory (or complex machine) and the cell 
are congruent because the key to the char-
acterization of this logic lies in communi-
cation (between components) and control 
(of components)—that is, in systems theo-
ry, which therefore determines the episte-
mology of the cell.” Ipso facto, the 
mathematical foundations of biology, and 
therefore its translational partner, medi-
cine, reside in the mathematics of systems 
theory. Hence, the roles of signal process-
ing and the closely related theories of 
communication, control, and information 
will play constitutive functions as medi-
cine evolves into a translational science 
resting on a theoretical framework. 

This article illustrates these basic-sci-
ence roles with diagnostic and therapeutic 
models involving logical circuits for com-
binatorial drug analysis, Karnaugh maps 
in the construction of gene regulatory 
networks, Markov chain perturbation the-
ory for determining therapeutic action, 
queuing theory in analyzing the effects of 
gene copy number alterations (CNAs) on 
gene expression, and the use of minimum-
mean-square-error estimation in the 
design of biomarkers for disease. My aim 
is simple: attract engineers into theoreti-

cal medicine, where their expertise can 
improve the human condition. 

Recognition of the fundamental role of 
systems theory for the life sciences is not a 
recent phenomenon. In the original 1948 
edition of Cybernetics: or Control and 
Communication in the Animal and 
Machine, Norbert Wiener wrote, “Thus, as 
far back as four years ago, the group of sci-
entists about Dr. Rosenblueth and myself 
had already become aware of the essential 
unity of the set of problems centering 
about communication, control, and statis-
tical mechanics, whether in the machine 
or in living tissue” [2].

Wiener’s insights were in accord with 
the contemporaneous thinking of one of 
the greatest biologists of the 20th century, 
Conrad Waddington, who in his 1935 book, 
How Animals Develop, stated, “The pro-
cesses which keep an animal alive have to 
be quite as highly organized as the opera-
tions in the most complicated mass-pro-
duction factory. c To say that an animal 
is an organism means in fact two things: 
firstly, that it is a system made up of sepa-
rate parts, and secondly, that in order to 
describe fully how any one part works one 
has to refer either to the whole system or 
to the other parts.” [3] These comments, 
and those of Wiener, are basic epistemolog-
ical statements about the nature of biologi-
cal science and medicine [1]. 

PROBABILISTIC BOOLEAN 
NETWORKS
Gene regulatory networks describe the 
manner in which cells execute and con-
trol functioning. They are central to sys-
tems medicine, for which a basic aim is to 
develop therapies based on the disruption 
or mitigation of aberrant gene function 
contributing to the pathology of a disease, 
mitigation being accomplished by the use 
of drugs to act on gene products. Owing 

to the role played by Boolean networks 
and their generalization to probabilistic 
Boolean networks (PBNs), we begin with a 
brief section on these, deferring to the lit-
erature for a general discussion [4].

A PBN consists of a set of genes with 
discrete expression levels, often, although 
not necessarily, one (expressed) and zero 
(not expressed). Each gene is regulated by 
some subset of “predictor” genes and the 
prediction rules depend on the “context” 
of the cell, which is determined by latent 
variables external to the network. Latent 
variables are inevitable because the model 
network contains only a limited number 
of genes and the cell is open to extracellu-
lar signals. One might think of a multi-
plexor determining the operative logic at 
any time point.

Formally, a PBN consists of a set V5
5x1, x2, c, xn6  of n  nodes, xi [  
50, 1,c, d 216, and a set 5f1, f2,c, fk6 
of vector-valued functions. For gene regu-
lation, xi represents the expression value 
of the i th gene, but it is common to refer 
to xi as the i th gene. The vector 
x 1t 2 5 1x1 1t 2 , c, xn 1t 22  is called a 
“gene activity profile” (GAP) and repre-
sents the network state at time t. 
The vector function fl 5 1 fl1, c, fln 2  
defines a constituent network, or “con-
text,”  of  the PBN. The function 
fli : 50, c, d 216n S 50, c, d216  is 
the predictor of gene i in context l. At each 
time point, there is a probability q of 
selecting a new context. If the context 
remains unchanged, then the values of all 
genes are updated synchronously accord-
ing to the current context. If a switch is 
called for, then a context is randomly 
selected according to a selection-probabili-
ty distribution and gene values are updat-
ed using the new context rules. A 
single-context PBN without perturbation 
is a classical Boolean network.
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The dynamic behavior of a PBN is 
modeled by a Markov chain whose states 
are ordered pairs consisting of a context 
and a GAP  For a PBN with perturbation, 
each gene may randomly change its value 
with small probability p at each epoch. 
Assuming p > 0, the Markov chain (net-
work) possesses a steady-state distribution. 

COMBINATORIAL DRUG ANALYSIS
Cell regulation involves nonlinear multi-
variate relations among many genes, 
involving extensive parallelism, redundan-
cy, feedback, and distributed control. 
Cancer is typically a disease of several net-
work faults, a fault being a structural error 
in the system. The accumulation of DNA 
mutations may cause the signaling path-
ways to behave erratically, leading to pro-
liferation (unregulated cell growth) or the 
survival of cells that should undergo apop-
tosis (programmed cell death) on account 
of DNA damage. In the context of a 
Boolean network, “stuck-at” faults corre-
spond to frozen cell logic, where a compo-
nent is either stuck at zero (OFF) or stuck 
at one (ON). A key goal is to find drug 
combinations that intervene so as to alter 
aberrant behavior leading to cancerous 
phenotypes. We consider signaling path-
ways associated with growth factors, these 
being external signals directing a cell to 
divide. The goal is to model these signal-
ing pathways as an input-output Boolean 
circuit and to use the model for 1) enu-
merating the different fault (or malfunc-
tion) possibilities, 2) carrying out fault 
classification, and 3) designing the appro-
priate corrective action (therapy) [5]. 

In the Boolean circuit shown in 
Figure 1, there are five inputs to the net-
work forming the binary vector [EGF, 
HBEGF, IGF, NRG1, PTEN]. There are 
seven outputs, transcription factors (TFs) 
(signaling proteins), marked in green, and 
the activation status of some key proteins, 
not colored, forming the binary vector 
[FOS-JUN, SP1, SRF-ELK1, SRF-ELK4, 
BCL2, BCL2L1, CCND1]. The figure shows 
intervention points for six drugs and possi-
ble locations of stuck-at-1 (black) and 
stuck-at-0 (red) errors that can induce pro-
liferation and stop apoptosis—for instance, 
Points 6 and 7 refer to Ras and PTEN 
being stuck ON and OFF, respectively. [FIG1] Growth factor logic circuit with drug interventions.
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Consider the input 00001, in which PTEN 
is activated. Absent faults, the output is 
0000000, which is nonproliferative; how-
ever, with faults, the outputs will be differ-
ent. The goal of drug intervention is to 
produce an output signal close to the non-
proliferative output 0000000 and away 
from the most proliferative output 
1111111. 

Given the logic diagram of Figure 1, 
one can develop software that, given an 
input vector, computes output vectors 
under different fault scenarios and dif-
ferent drug combinations [5]. From 
these, therapy would be chosen based 
on trying to achieve maximum reduc-
tion of proliferation with a minimum of 
drug intervention. 

INFERRING REGULATORY 
NETWORKS FROM GENETIC 
PATHWAYS
A pathway diagram (for instance, Ras S 
Raf S MEK1 in Figure 1) represents a 
portion of a gene regulatory network. It is 
missing the full topology (interaction) 
between all genes in the diagram and any 
multivariate regulation. Since many net-
works involving the same genes might 
manifest the same pathways, given a 
pathway diagram the inverse problem is 
to construct an uncertainty class of net-
works, each manifesting the given path-
ways. The approach taken in [6] is to list 
the simple pathways ASB, the arrow 
indicating activation or deactivation, in a 
pathway diagram and build a set of 
Karnaugh maps where each map repre-
sents the next state of a gene and the con-

stituents of a map are the predictors for 
the next gene value. The pathway knowl-
edge partially fills in the Karnaugh maps. 
Since it is common for a pathway dia-
gram to be built of pathways correspond-
ing to different cell lines or different 
cellular contexts, there can be contradic-
tions and these must be resolved via some 
protocol. At the end of the procedure, the 
collection of Karnaugh maps will not rep-
resent a single network, but rather an 
uncertainty class of networks.

Figure 2(a) shows a pathway diagram 
involving the gene p53, whose primary 
role in mammalian genomes is to func-
tion as a transcription factor for down-
stream genes whose expression can 
modulate cell cycle progression, repair 
damaged DNA, and induce senescence and 
apoptosis. The state space is composed of 
binary vectors [ATM, p53, Wip1, Mdm2]. 
At the top of the diagram is the external 
signal dna-dsb, the DNA damage input. An 
uncertainty class of Boolean networks has 
been constructed [6]. Figure 2(b) and (c) 
shows two potential state spaces, with the 
allowed state transitions. Parts (b) and (c) 
show the state-space transition diagram 
under normal conditions (dna2dsb 5 0) 
and in the presence of DNA damage 
(dna2dsb 5 1), respectively. Under nor-
mal conditions, there is a single steady 
state in which p53 is inactive; with DNA 
damage, there is a cycle in the steady state 
in which p53 switches between activation 
and deactivation. These possible steady-
state scenarios are implicit in the diagram 
of Figure 2(a), but only become explicit in 
the inferred networks.

STRUCTURAL INTERVENTION IN 
GENE REGULATORY NETWORKS
In the context of gene regulatory net-
works, mainly PBNs, two basic interven-
tion approaches have been considered: 
stationary control and structural interven-
tion. Stationary control employs Markov 
decision processes on the network Markov 
chain and is generally based on flipping 
(or not flipping) the value of a control 
gene over time with the goal of beneficial-
ly altering network dynamics away from 
undesirable states [7], [8]. Structural 
intervention involves a one-time change of 
the network structure (wiring) to move 
the steady-state mass away from states 
considered to be undesirable [9]. 

In a normal mammalian cell cycle, 
cell division coordinates with growth in 
a process tightly controlled via extra-
cellular signals indicating whether a 
cell should divide or remain in a resting 
state. The positive signals (growth fac-
tors) instigate the activation of the key 
gene Cyclin D (CycD). If gene p27 is 
mutated and permanently unexpressed, 
it is possible for both CycD and Rb to be 
simultaneously inactive and, conse-
quently, for the cell to cycle in the 
absence of any growth factor, a cancer-
ous scenario. The mutated Boolean 
functions for eight genes, Rb, E2F, 
CycE, CycA, Cdc20, Cdh1, UbcH10, and 
CycB, are given in Table 1 [9]. The 
growth factor is not part of the cell and 
its value is determined by the surround-
ing cells. The expression of CycD 
changes independently of the cell’s con-
tent, reflects the state of the growth 

[FIG2] p53 networks: (a) pathway diagram involving p53, (b) state transition diagram under normal conditions, and (c) state transition 
diagram in the presence of DNA damage.
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 factor, and is not part of the network. 
Depending on the expression  status of 
CycD (CycD = 0 or CycD = 1), one of 
two context Boolean networks is 
obtained. The PBN model is completed 
by defining a probability for switching 
contexts and a small probability that a 
gene may randomly flip its value. 

In the cancerous scenario, the goal 
is to avoid states with CycD = Rb = 0. 
We consider structural intervention 
involving a 1-b perturbation of the 
gene logic to reduce the long-run 
probability of being in a state with 
CycD = Rb = 0; indeed, our aim is to 
find the optimal perturbation, the one 
minimizing the total steady-state prob-
ability mass in such states. The method 
employs Markov chain perturbation 
theory to express the steady-state dis-
tribution of the perturbed network in 
terms of the steady-state distribution 
and fundamental matrix of the original 
network. 

Table 2 shows the undesirable steady-
state mass for the most beneficial logic 
perturbation for each gene. Flipping the 
output expression in the truth table for 
the second Boolean network leads to the 
minimum undesirable steady-state mass. 
Hence, in practice, we choose to inter-
vene, if possible, in the function regulat-
ing Rb to shift the steady-state mass away 
from undesirable states. 

EFFECT OF GENE COPY NUMBER ON 
GENE EXPRESSION
CNAs, abnormal numbers of gene copies, 
are major causes of genetic diseases. 
Studying CNAs and their effects on gene 
expression is important for understanding 
the pathogenesis of cancer. Gene regula-
tion involves TFs being assembled into 
multiprotein complexes for specific regu-
latory functions. To characterize the effect 
of CNAs on transcription, one should con-
sider gene expression as not only a func-
tion of DNA copy number but also of TF 
quantities. Since transcription can be 
viewed as a mechanism constituted by a 
series of stochastic processes, queuing 
theory can be applied to model temporal 
TF binding activities and thereby describe 
the effect of copy number changes on 
gene expression.

The transcriptional model for 
Endo16, a gene encoding a secreted pro-
tein of a sea urchin’s embryonic and lar-
val midgut, provides a good system for 
studying the relationship between copy 
number and expression because a com-
putational model for the logical opera-
tions at TF binding sites is well 
established. Figure 3 shows three bind-
ing sites, CG2, CG3, and CG4, for a TF 
called CG, in module A, which functions 
like an AND gate connecting to the 
switch of an amplifier. When all binding 
sites are bound by CG proteins, the 

switch turns on; otherwise, it is off and 
the amplifier stops working. A similar 
computational function is found in mod-
ule B: binding sites for CY and CB1, two 
different TFs that operate like an AND 
gate controlling the output of another 
regulatory signal. 

Based on the computational model, 
two simplified regulatory apparatuses are 
applied to evaluate the effect of CNAs: 1) 
single TF, in which all binding sites con-
nect to a single AND logic gate; 2) general 
cases with multiple TFs, in which multiple 
AND gates modeled in 1) connect to 
another AND gate controlling the tran-
scription switch [10]. Using queuing theo-
ry, gene expression values under different 
DNA copy numbers are derived based on 
various TF arrival/departure assumptions. 
A key conclusion is that the relationship 
between copy number and gene expres-
sion is generally nonlinear, but approach-
ing linearity when the ratio of TF arrival 
rate to TF departure rate is large. This 
would explain low correlations between 
copy number and expression found in the 
literature. 

MINIMUM-MEAN-SQUARE-ERROR 
BIOMARKER ERROR ESTIMATION
A salient hope for the new high-
throughput genomic and proteomic 
technologies is the construction of gene/
protein biomarkers for diagnosis and 
prognosis, in particular, for early detec-
tion and providing molecular-based 
decisions for therapeutic alternatives. 
Although a vast amount of data is gath-
ered, we are actually faced with a paucity 
of measurements. It is commonplace in 
phenotypic classification studies for 
there to be tens of thousands of features, 
say, gene expressions, and to have sam-
ple sizes less than 100, and often less 
than 50. This is a striking reversal of the 
situation that makes for good classifier 
design and error estimation: a small 
number of features and a large sample. 

[TABLE 2] UNDESIRABLE STEADY-STATE MASS FOR THE MOST BENEFICIAL LOGIC PERTURBATION FOR EACH GENE.

GENE Rb E2F CycE CycA Cdc20 Cdh1 UbcH10 CycB

BN1 0.1901 0.2903 0.2534 0.2484 0.2071 0.2576 0.2587 0.2532

BN2 0.0413 0.2198 0.2529 0.2543 0.2568 0.2576 0.2587 0.2550

[TABLE 1] LOGICAL REGULATORY FUNCTIONS 
FOR MUTATED BOOLEAN CELL CYCLE NETWORK.

ORDER GENE REGULATING FUNCTION

X1 CycD EXTRA-CELLULAR SIGNALS

X2 Rb CycD ` CycE ` CycA ` CycB

X3 E2F Rb ` CycA ` CycB

X4 CycE E2F ` Rb

X5 CycA 1E2F ~ CycA 2 ` 1Rb ` Cdc20 ` 1Cdh1 ` UbcH10 2 2

X6 Cdc20 CycB

X7 Cdh1 1CycA ` CycB 2 ~ Cdc20

X8 UbcH10 Cdh1 ~ 1Cdh1 ` UbcH10 ` 1Cdc20 ~ CycA ~ CycB 22

X9 CycB Cdc20 ` Cdh1
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With regard to error  estimation, the 
small sample sizes mean that the data 
cannot be split and error estimation 
must take place on the same data as 
used for training, with cross-validation 
error estimation being ubiquitous. 
While it is true that cross-validation per-
mits error estimation using the training 
data, cross-validation is usually unac-
ceptably inaccurate on small samples 
owing to large variance, meaning that 
the estimate is scientifically vacuous [1]. 

A surprising historical fact concern-
ing cross-validation is that, although it 
has been around for more than 40 
years, originally in the form of leave-
one-out, and has been used extensively, 
until several years ago there were no 
analytic studies on its relationship with 
the true error. That relationship is 
completely characterized by the joint 
distribution of the true and estimated 
errors and characterized to a lesser 
extent by their mixed second-order 

moment, which is required for the 
mean-square error (MSE) between 
them. Only in 2006 was the joint distri-
bution found, via complete enumera-
tion, for the true and leave-one-out 
estimated errors for the multinomial 
distribution. Exact representation for 
the mixed second-order moment was 
discovered in 2010. For leave-one-out 
in the Gaussian model, the exact joint 
distribution was found in 2010 for the 
univariate model [11]. A double-asymp-
totic (dimension and sample size 
increase at a fixed proportional rate) 
representation of the second-order 
moments for the multivariate model 
was discovered in 2011 [12]. Taking 
together the simulation and theoretical 
studies, it is seen that cross-validation 
can be reasonably accurate for small 
samples if the optimal (Bayes) error for 
the classification is very small; that is, 
if one makes appropriate modeling 
assumptions. 

If one is going to make modeling 
assumptions on the feature-label distribu-
tion, then why not take a classical engi-
neering approach and f ind the 
minimum-mean-square-error (MMSE) 
error estimate? To wit, assume that the 
true feature-label distribution belongs to 
an uncertainty class, V, of distributions 
and there is a prior distribution governing 

[FIG3] Logic of the Endo 16 cis-regulatory system.

Module A

CG3 CG4CG2 SPGCF1OTX
Z

i1 i4 i11

If(CY and CB1) If(P and CG1 and CB2) If(CG2 and CG3 and CG4)i1 = 1 i4 = 2 i11 = 2

i11 = 1i4 = 0i1 = 0.5else else else

PCB2 CG1UI RCB1CY

Module B BP

[FIG4] RMS deviation for linear classification in a Gaussian model. 
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the parameters of the distributions in 
V [13]. For instance, in the Gaussian 
model, there are class-conditional distri-
butions for the two classes to be discrimi-
nated, each parameterized by its mean 
vector and covariance matrix, and these 
parameters are assumed to satisfy some 
prior distribution. According to Bayesian 
theory, the optimal MMSE error estimate 
is given by the expected value of the true 
error relative to the posterior distribution 
arising from the sample data. Analytic 
representation of this estimate has been 
found for multinomial discrimination [13] 
and for the Gaussian model with linear 
classification [14]. This estimate possesses 
best average performance, and is unbi-
ased, over all distributions in V and all 
samples (of a given size). Figure 4 com-
pares the average root mean square (RMS) 
(square root of MSE) over all samples and 
distributions as a function of sample size 
for the MMSE estimate with some distri-
bution-free estimates (resubstitution, 
leave-one-out, five-fold cross-validation, 
.632 bootstrap, bolstering, and plug-in) in 
a certain Gaussian model [14]. Once 
again, a signal processing methodology 
provides an optimal solution to a salient 
medical problem.

CONCLUSION
To the extent that medicine concerns 
interventions in biological systems and, 
concomitantly, decisions regarding 
optimal interventions, its theoretical 
knowledge must be constituted in 
terms of mathematical models formaliz-
ing human knowledge regarding the 
systems, operations on those models 
characterizing physical interventions, 
and objective criteria corresponding to 
the benefits of intervention. Given the 
primary roles of communication and 
control as distinguishing features of a 
biological system, as opposed to merely 
a collection of complex molecules, the 
mathematical foundations of medicine 
naturally fall within signal processing 
and systems theory. This article has 
presented examples of how various bio-
medical problems fit into classical engi-
neering paradigms so that their 
solutions are obtained within standard 
mathematical frameworks.
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