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Abstract—External control of a genetic regulatory network is
used for the purpose of avoiding undesirable states such as those
associated with a disease. Certain types of cancer therapies, such
as chemotherapy, are given in cycles with each treatment being fol-
lowed by a recovery period. During the recovery period, the side ef-
fects tend to gradually subside. In this paper, it is shown how an op-
timal cyclic intervention strategy can be devised for any Markovian
genetic regulatory network. The effectiveness of optimal cyclic
therapies is demonstrated through numerical studies for random
networks. Furthermore, an optimal cyclic policy is derived to con-
trol the behavior of a regulatory model of the mammalian cell-cycle
network.

Index Terms—Cyclic therapy, dynamic programming, genetic
regulatory networks, probabilistic Boolean networks (PBNs),
stochastic optimal control.

I. INTRODUCTION

SUCCESSFUL treatment of bacterial infections is largely
a result of our ability to exploit the biochemical differ-

ences between bacteria and human cells so as to achieve toxic
drug concentrations in the former while sparing the latter. Un-
fortunately, such high selectivity is at present elusive in the
chemotherapy of human cancers. Hence, great efforts are re-
quired to determine dose schedules that maximize the benefit to
toxicity ratio in cancer treatment [1]. To this end, chemotherapy
is generally given in cycles: each treatment is followed by a re-
covery phase. During a recovery period, the side effects tend to
gradually subside. Dose intensity is a measure of chemotherapy
delivery that looks at the amount of drug delivered per unit of
time. A higher drug dose intensity can be delivered by increasing
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the dose per cycle (dose escalation) or by reducing the interval
between cycles (dose density).

For a given integrated drug effect, the chance of eradicating
the tumor is maximized by delivering the most effective dose
level of drug over as short a time as possible. Tumors given less
time to grow between treatments are more likely to be eradi-
cated. Administering high quantities of drugs at the beginning
of a chemotherapy cycle might fail for two reasons. First, levels
higher than a certain concentration may not increase the killing
rate of cancer cells. Second, even if they did, the toxicity could
be intolerable to the patient. In practice, optimizing the schedule
means determining a way to give the maximum integrated ef-
fect over as short a time as possible, consistent with reasonable
quality of life [1].

A prime objective of modeling genetic regulatory networks is
to develop therapies based on gene regulation, in particular, the
disruption or mitigation of aberrant gene function contributing
to the pathology of a disease. Engineering therapeutic tools
involve synthesizing nonlinear dynamical networks, analyzing
these networks to characterize gene regulation, and developing
intervention strategies to modify dynamical behaviors [2]. In
this paper, we derive an optimal cyclic intervention strategy
for gene regulation in the context of probabilistic Boolean
networks (PBNs).

PBNs, a class of stochastic models for gene regulatory net-
works [3], have recently received considerable attention in the
literature. The dynamic behavior of PBNs can be studied within
the context of Markov chains [3]. Each state of the Markov
chain basically represents the concatenation of all the quantized
gene values usually referred to as the gene activity profile
(GAP). To date, effective intervention strategies have been
studied for PBNs. Initial efforts have focused on manipulating
external (control) variables to desirably affect system evolution
over a finite-time horizon [4]. These short-term policies have
been shown to possess the ability to change the dynamical
behavior of regulatory networks over a small number of stages.
However, they are not effective in changing the long-run
behaviors. To address this issue, stochastic control policies
have been designed to affect the long-run network behaviors of
regulatory networks [5]. For a predefined cost of intervention
and cost of undesirable states at each stage, the objective is
to find a control strategy that minimizes the expected total
discounted cost in the long run. The optimal control policy with
regard to the cost values can be found via dynamic program-
ming. It is worthwhile to point out that solving the stochastic
control problem fails when the number of genes present in the
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network goes beyond relatively modest numbers. To mitigate
this problem and bypass the impediment of model estimation,
model-free methods based on reinforcement learning [6] and
mean first-passage times [7] have also been introduced.

For hitherto intervention strategies [4]–[7], at every state tran-
sition of the system, the intervention strategy dictates whether
to apply treatment or not. In this paper, our objective is to devise
an effective intervention strategy under the constraint that inter-
vention is permitted only every W transitions, where W ∈ N

denotes the length of the recovery period. An intervention strat-
egy that is optimal for the case where intervention is permitted
at every transition is not necessarily optimal (i.e., may not mini-
mize the expected total discounted cost) if one is only permitted
to apply treatment every W transitions. We will refer to a policy
that is optimal when intervention is permitted every transition
as an optimal one-transition policy. Similarly, we refer to the
policy that is optimal when intervention is permitted every W
transitions as an optimal W-transition policy.

We define a treatment window to be every W transitions of the
system. Intervention is permitted at the beginning of a treatment
window. Thereafter, the system transitions W − 1 steps without
intervention. To incorporate the cyclic constraint on interven-
tions, we construct a Markov chain with an augmented state
space based on the original Markov chain. An optimal cyclic in-
tervention policy, i.e., optimal W -transition policy, can be found
by solving the stochastic control problem for the Markov chain
with the augmented state space via dynamic programming al-
gorithms. However, this procedure maybe prohibitive due to the
size of the augmented state space. We show that the augmented
state space can be collapsed resulting in a compressed space of
size equal to the original state space. We accomplish this reduc-
tion in the size of the state space by accumulating the expected
cost of the system progressing during a period. The new cost
function is used to select the proper action when intervention
is permitted. We establish the convergence of the dynamic pro-
gramming algorithm and show how the optimal W -transition
intervention strategy can be found. Furthermore, we compare
the performance of an optimal W -transition policy to that of an
optimal one-transition policy when intervention is applied every
W transitions. We show that although this may not be true in
general, in our intervention framework, optimal one-transition
policy can be used as an approximation of optimal W -transition
policy.

Our focus in this paper is on binary PBNs. However, the
proposed procedure for devising an optimal W -transition strat-
egy applies without change to a PBN having any discrete range
of values. The difficulty with PBNs possessing more than two
values per gene is that the size of the state space increases dra-
matically. Conceptually, networks with finer quantization can
be analyzed using the same tools; indeed, the original appli-
cation of automatic control considered a ternary network aris-
ing from cDNA-microarray data quantized into three values:
−1 (down-regulated), +1 (up-regulated), and 0 (invariant) [4].
More generally, the proposed procedure can be applied to any
Markovian regulatory network and should be mathematically
viewed in this manner. For instance, one can devise an opti-
mal W -transition intervention strategy for dynamic Bayesian

networks (DBNs) [8]. The proposed method can actually be
viewed for DBNs in the same manner as with PBNs because
any DBN can be represented by a probabilistically equivalent
PBN [9].

This paper is structured in the following manner. Necessary
definitions are provided in Section II. We show how to de-
rive an optimal W -transition control policy in Section III. In
Section IV, we investigate the performance of optimal one-
transition and W -transition policies on synthetic networks with
various properties. Furthermore, we apply the proposed inter-
vention method to control a regulatory model of the mammalian
cell-cycle network.

II. BACKGROUND

A. Probabilistic Boolean Network

An instantaneous PBN consists of a sequence V = {xi}n
i=1 of

n nodes, where xi ∈ {0, . . . , d − 1}, together with a sequence
{f l}k

l=1 of vector-valued functions called predictor functions. In
the framework of gene regulation, each element xi represents the
expression level of a gene. It is common to mix the terminology
by referring to xi as the ith gene. Each vector-valued func-
tion fl = (fl1 , . . . , fln ) determines a constituent network of the
PBN. The function fli : {0, . . . , d − 1}n → {0, . . . , d − 1} is
the predictor of gene i, whenever network l is selected. The
number of quantization levels is denoted by d. At each step, a
predictor function is randomly selected according to probability
distribution {pl}k

l=1 . After selecting the predictor function fl ,
the values of the genes are updated accordingly; that is, in con-
formity with the network determined by fl . We consider PBNs
with perturbation in which each gene may change its value with
a small perturbation probability p at each time unit. The dynam-
ics of a PBN can be represented via a Markov chain and, as a
consequence of the perturbation, this Markov chain is ergodic
and possesses a steady-state distribution.

Two quantization levels have thus far been used in practice.
If d = 2 (binary), then the constituent networks are Boolean
networks with 0 or 1 meaning OFF or ON, respectively. The case
d = 3 (ternary) arises when we consider a gene to be −1 (down-
regulated), +1 (up-regulated), and 0 (invariant). This situation
commonly occurs with cDNA microarrays, where a ratio is
taken between the expression values on the test channel (red)
and the base channel (green). In this paper, we will develop the
methodology for d = 2, so that gene values are either 0 or 1.
However, the methodology is applicable to any finite number of
levels.

The GAP is an n-digit binary vector x(t) = (x1(t), . . . ,
xn (t)) giving the expression values of the genes at time t, where
xi(t) ∈ {0, . . . , d − 1}. We note that there is a natural bijection
between the GAP x(t) and its decimal representation, which
takes values in W = {0, 1, . . . , dn−1}.

In the presence of external controls, we suppose that the
PBN has m binary control inputs, {ci(t)}m

i=1 , which specify
the interventions on control genes g1 , . . . , gm . A control ci(t),
which can take values 0 or 1 at each updating epoch t, specifies
the action on the control gene gi . The decimal bijection of the
control vector, ug1 ,...,gm

(t) ∈ C = {0, 1, . . . , 2m −1}, describes
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the complete status of all the control inputs. As in previous
applications, we focus on a single control gene, ug (t) ∈ C =
{0, 1}. Treatment alters the status of the control gene g, which
can be selected among all the genes in the network. If the control
at updating epoch t is on, ug (t) = 1, then the state of the control
gene g is toggled; if ug (t) = 0, then the state of the control gene
g remains unchanged. We assume that the control gene g is
given, and we refer to ug (t) as u(t) in the rest of this paper.

Brun et al. showed that the dynamic behavior of a PBN can be
modeled by a Markov chain [10]. In this case, system evolution
is represented by a stationary discrete-time equation

z(t + 1) = f(z(t), u(t), w(t)), for t = 0, 1, . . .

where state z(t) is an element of the state-space S = {(c, s) :
c ∈ {1, . . . , k} ∧ s ∈ {0, 1, . . . , dn−1}}. It should be noted
that k is the total number of predictor functions. In this paper,
we denote the cardinality of S by N .

The disturbance w(t) is the manifestation of uncertainties in
the PBN. It is assumed that both the gene perturbation distri-
bution and the network switching distribution are independent
and identical for all time steps t. Originating from a state i, the
successor state j is selected randomly within set S according to
the transition probability pij (u)

pij (u)
�
= P (z(t + 1) = j | z(t) = i, u(t) = u)

for all i and j in S, and for all u in C. Gene perturbation
insures that all the states in the Markov chain communicate
with one another. Hence, the finite-state Markov chain has a
unique steady-state distribution [11].

B. Optimal Intervention for PBNs

In cancer, one can consider the correlation between metastasis
and the abundances of mRNA for certain genes [12]. A gene,
which associates with metastasis, is called a target gene. Such
a gene can be used to partition the state space into subsets of
desirable and undesirable states, D and U , respectively.

Pal et al. employed Markov decision processes to devise an
optimal intervention strategy that can alter the likelihood of
undesirable states in the long run [5]. They assumed that in-
tervention is allowed at every transition. In the following, we
summarize their approach to derive an optimal one-transition
policy. A cost-per-stage g(i, j, u) is associated to each transi-
tion in the system. In general, the cost-per-stage may depend on
the origin state i, the successor state j, and the control input u.
We assume that the cost-per-stage is stationary and bounded for
all , in S, and u in C. We define the expected immediate cost in
state i, when control u is selected, by

g(i, u) =
∑
j∈S

pi,j (u) g(i, j, u).

We consider a discounted formulation of the expected to-
tal cost. The discounting factor, λ ∈ (0, 1), ensures the con-
vergence of the expected total cost over the long run [13]. In
the case of cancer therapy, the discounting factor emphasizes
that obtaining treatment at an earlier stage is favored over later
stages. The expected total discounted cost given policy π and

initial state i is denoted by

Jπ (i)= lim
N →∞

E

{
N −1∑
t=0

λt g (z(t), z(t + 1), µ(z(t))) |z(0) = i

}

(1)
where state z(t) is an element of the state space S at time t.
A policy π = {µ(0), µ(1), . . .} is a sequence of decision rules
µ(t) : S → C, for each time step t. The vector Jπ of the ex-
pected total discounted costs is called the value function. In
this stochastic control problem, we seek an intervention strat-
egy π∗ among all the admissible intervention strategies Π that
minimizes the value function for each state i

π∗(i) = arg min
π∈ Π

Jπ (i), ∀ i ∈ S. (2)

As we mentioned earlier, this is the optimal one-transition
policy. For a finite-time horizon, the dynamic programming al-
gorithm describes how the optimal cost Jk+1 propagates back-
ward in time to the optimal cost Jk

Jk (i) = min
u ∈C


g(i, u) + λ

N −1∑
j=0

pi,j (u)Jk+1(j)


 . (3)

The previous equation motivates the introduction of the mapping
T : S �→ 	 defined by

TJ(i) = min
u ∈C


g(i, u) + λ

N −1∑
j=0

pi,j (u)J(j)


 ∀i ∈ S

(4)
for any value function J : S �→ 	. Given the mapping of (4),
the following propositions summarize how one can devise an
optimal one-transition policy. Proofs of these statements can be
found in [13].

Proposition 1 (Convergence of discounted cost algorithm):
For any x ∈ S and any bounded function J : S �→ 	, the opti-
mal cost function satisfies

J∗(x) = lim
M −→∞

(TM J)(x) ∀x ∈ S.

Proposition 2 (Bellman’s optimality equation): The optimal
cost function J∗ satisfies

J∗ = TJ∗. (5)

Furthermore, J∗ is the unique solution of this equation within
the class of bounded functions.

Proposition 3 (Necessary and sufficient condition for opti-
mality): A stationary policy µ is optimal if and only if it attains
the minimum in Bellman’s optimality equation of (5).

The three aforementioned propositions provide the basis for
a method for determining an optimal one-transition policy.
Proposition 2 asserts that the optimal cost function satisfies
Bellman’s optimality equation, while Proposition 1 states that
the optimal cost function can be iteratively determined by run-
ning the recursion equation

Jk+1 = TJk , k = 0, 1, 2, . . . (6)

for any bounded initial cost function J0 : S �→ 	. Since this
iteration is guaranteed to converge to J∗, one can continue
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the iteration until some stopping criterion is reached. By
Proposition 3, the resulting optimal policy is also stationary.
The procedure described in (6) is referred to as the value itera-
tion algorithm since, at every stage, we are iterating on the value
function. The optimal one-transition policy is obtained as the
argument of the minimization step once the iterative procedure
has converged.

III. OPTIMAL CONTROL STRATEGY FOR CYCLIC

THERAPEUTIC METHODS

Our objective is to find an effective intervention policy when
we are allowed to apply treatment only every W transitions,
in other words, at times t = 0,W, 2W, . . .. To incorporate this
cyclic constraint in our mathematical framework, we construct
a Markov chain with an augmented state space based on the
original Markov chain. The new (augmented) state space is
defined as

S̃ = {(i, j) | i ∈ {0, . . . , N − 1}, j ∈ {0, . . . , W − 1}}

where N is the size of the original state space S. There are two
types of states in the augmented state space: state (i, j) with
j = 0, represented as (i, 0), where intervention is permitted,
and state (i, j) with j 
= 0, where intervention is not permitted.
In the augmented state space, the control u is constrained to take
values in U(i, j), a given nonempty subset of C. For the first type
of states, (i, 0), we have U(i, 0) = {0, 1}, while for the second
type of states, (i, j) where j 
= 0, we have U(i, j) = {0}.

The transition probabilities in the augmented state space are
defined as a function of control u. For state (i, 0), we define the
probability of transitioning to state (i′, j′) given control u as

p(i,0)(i′,j ′)(u) =
{

pi,i′(u), if j′ = 1
0, otherwise

where pi,i′(u) denotes the probability of transitioning from state
i to state i′ under control u. On the other hand, for states (i, j),
where j 
= 0, control u only admits one value, u ∈ {0}. For
these states, the transition probability is defined as

p(i,j )(i′,j ′)(u = 0) =
{

pi,i′(u = 0), if j′ = (j + 1) mod W
0, otherwise

where pi,i′(u = 0) = pi,i′ denotes the uncontrolled probability
of transitioning from state i to state i′. It should be noted that
(j′ = (j + 1) mod W ) is true if either (j′ = j + 1) or (j =
W − 1 and j′ = 0) is true. Considering that u ∈ U(i, j), the
probability of transitioning from state (i, j) to state (i′, j′) can
be compactly defined as

p(i,j )(i′,j ′)(u) =
{

pi,i′(u), if j′ = (j + 1) mod W
0, otherwise.

(7)

Let us now consider an example to explain how the afore-
mentioned definition simulates the cyclic intervention scenario.
Assume that at time t = 0, we observe state i. At this time,
we are allowed to apply control u ∈ {0, 1}. The augmented
state corresponding to state i at time t = 0 is (i, 0). From
augmented state (i, 0), under control u, the system transitions
to the augmented state (i′, 1) with probability pi,i′(u), where

u ∈ {0, 1}. The probability of transitioning to any other state
(i′, j), where j 
= 1, is zero. At time t = 1 and from aug-
mented state (i′, 1), the system transitions to state (i′′, 2) with
probability pi ′,i′′(0) since u ∈ {0}. Likewise, one can consider
transitions for t = 2, . . . , W − 2. Similarly, assume that we
observe state k at time t = W − 1. The probability of tran-
sitioning to the augmented state (k′, 0) is pk,k ′(0). The prob-
ability of transitioning to any other state (k′, j), where j 
= 0,
is zero.

The cost-per-stage for transitioning from augmented state
(i, j) to augmented state (i′, j′), given control u, is defined as

g(i, j, i′, j′, u)

=




C + c i′ ∈ U and {j = 0 and j′ = 1} and u = 1
C i′ ∈ U and {j′ = (j + 1) mod W} and u = 0
c i′ ∈ D and {j = 0 and j′ = 1} and u = 1
0 i′ ∈ D and {j′ = (j + 1) mod W} and u = 0
0 otherwise

(8)

where C and c represent the cost of undesirable states and the
cost of treatment (control), respectively. Given u = 1, we assign
a cost to a transition from state (i, j) to state (i′, j′) only when
j = 0 and j′ = 1. In this case, if i′ is an undesirable state, the
corresponding cost is C + c; if i′ is a desirable state, the only
cost incurred is c. When u = 0, it is possible to transition to
(i′, j′) if j′ = (j + 1) mod W is true. In this case, if i′ is an
undesirable state, the corresponding cost is C; if i′ is a desirable
state, no cost is incurred. For all the other cases, no cost is
assigned.

Based on (8), we define the expected immediate cost at state
(i, j) when control u is selected by

g(i, j, u) =
N −1∑
i ′=0

W −1∑
j ′=0

p(i,j )(i′,j ′)(u)g(i, j, i′, j′, u)

=
N −1∑
i ′=0

[p(i,j )(i′,0)(u)g(i, j, i′, 0, u)

+ · · · + p(i,j )(i′,W −1)(u)g(i, j, i′,W − 1, u)].

In this equation, for each value of i′, only one term inside the
brackets is nonzero [based on the definition of the transition
probabilities in (7)]. Hence

g(i, j, u) =
N −1∑
i ′=0

p(i,i′)(u)g(i, j, i′, j′, u)

where j′ = (j + 1) mod W is true. Using the definition of
g(i, j, i′, j′, u) in (8), we have

g(i, j, u) =
{

C
∑

i ′∈U pi,i′(u = 1) + c, if u = 1
C

∑
i ′∈U pi,i′(u = 0), if u = 0.

(9)

From (9), it is clear that g(i, j, u) does not depend on j, i.e.,
g(i, j, u) = g(i, u).

As we explained in Section II-B, the dynamic programming
algorithm captures how the optimal cost at Jk+1 propagates
backward in time to the optimal cost Jk . For the augmented
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state space, we have

Jk (i, j)

= min
u∈ U (i,j )


g(i, j, u)+λ

N −1∑
i ′=0

W −1∑
j ′=0

p(i,j )(i′,j ′)(u) Jk+1(i′, j′)




∀(i, j) ∈ S̃. (10)
Since g(i, j, u) = g(i, u), we can rewrite (10) as
Jk (i, j)

= min
u∈ U (i,j )


g(i, u)+λ

N −1∑
i ′=0

W −1∑
j ′=0

p(i,j )(i′,j ′)(u) Jk+1(i′, j′)




∀(i, j) ∈ S̃. (11)

Our goal is to derive the value functions for the original state
space, i.e., S, based on (11). To this end, for every treatment
window starting with i ∈ S, we accumulate the total discounted
cost of all states in the window where no control can be applied
and add it to the average cost of state i. We then show how
the accumulated cost at the beginning of the (s + 1)th window
affects the accumulated cost at the beginning of the sth window,
where s = 0, 1, 2, . . .. This approach is in accord with the dy-
namic programming technique that ranks decisions based on the
sum of the present cost and the expected future cost, assuming
optimal decision making for subsequent stages. This manipula-
tion of the value function lets us collapse the augmented state
space S̃ to the much smaller space S. We prove the convergence
of the discounted cost algorithm in this framework and show
how an optimal W -transition control policy can be found using
standard dynamic programming algorithms.

Assume that P is the transition probability matrix of the un-
controlled Markov chain. For i, j ∈ S, let p(r)

i,j be the probability
of going from state i to state j in r steps, i.e., the (i, j)th entry
of the matrix P(r) . The objective is to compute the recursive
relation of the value function starting at time t = sW , given the
cost value at time t = (s + 1)W .

Without loss of generality, we assume that s = 0. In the aug-
mented state space S̃, we are not allowed to apply any control
at state (i,W − 1), hence from (7) and (11)

JW −1(i,W − 1)

= min
u∈U (i,W −1)


g(i, u) + λ

N −1∑
j=0

pi,j (u)JW (j, 0)




= g(i, 0) + λ

N −1∑
j=0

pi,j JW (j, 0). (12)

Given JW −1 , one can compute JW −2 as

JW −2(i,W − 2)

= min
u∈U (i,W −2)


g(i, u) + λ

N −1∑
j=0

pi,j (u)JW −1(j,W − 1)




= g(i, 0) + λ

N −1∑
j=0

pi,j JW −1(j,W − 1).

Replacing JW −1 from (12), we have JW −2(i,W − 2) as a
function of JW (k, 0) for all k ∈ S,

JW −2(i,W − 2)

= g(i, 0) + λ

N −1∑
j=0

pi,j

(
g(j, 0) + λ

N −1∑
k=0

pj,kJW (k, 0)

)

= g(i, 0) + λ

N −1∑
j=0

pi,j g(j, 0) + λ2
N −1∑
k=0

p
(2)
i,k JW (k, 0).

Similarly, we can compute JW −3 as

JW −3(i,W − 3)

=
N −1∑
j=0

(
p

(0)
i,j + λp

(1)
i,j + λ2p

(2)
i,j

)
g(j, 0)

+ λ3
N −1∑
k=0

p
(3)
i,k JW (k, 0).

One can recursively evaluate the value function for the last state
in a treatment window where no control is allowed, i.e., J1(i, 1),
as follow:

J1(i, 1) =
N −1∑
j=0

(
W −2∑
r=0

λr p
(r)
i,j

)
g(j, 0)

+ λW −1
N −1∑
k=0

p
(W −1)
i,k JW (k, 0). (13)

Finally, at time 0, intervention is allowed and the following
minimization problem leads to J0(i, 0):

J0(i, 0) = min
u∈U (i,0)


g(i, u) + λ

N −1∑
j=0

pi,j (u)J1(j, 1)


 . (14)

Using (13) and (14), we obtain

J0(i, 0)

= min
u∈U (i,0)


g(i, u)+λ

N −1∑
j=0

pi,j (u)

(
N −1∑
k=0

(
W −2∑
r=0

λr p
(r)
j,k

)
g(k, 0)

+ λW −1
N −1∑
k=0

p
(W −1)
j,k JW (k, 0)

)}
. (15)

We can rewrite (15) as

JsW (i, 0)

= min
u∈U (i,0)


g(i, u) + λ

N −1∑
j=0

pi,j (u)

(
N −1∑
k=0

(
W −2∑
r=0

λr p
(r)
j,k

)
g(k, 0)

+ λW −1
N −1∑
k=0

p
(W −1)
j,k J(s+1)W (k, 0)

)}
(16)

for s = 0, 1, 2, . . .. This equation reveals how the cost at the be-
ginning of the (s + 1)th window affects the cost at the beginning
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of the sth window. This equation ranks decisions based on the
sum of the present cost and the expected future cost considering
the cost of all the states where no control is allowed between
two treatment times. This manipulation of the value function
lets us collapse the state space from S̃ to S and leads to

Js(i)

= min
u∈U (i)


g(i, u)+λ

N −1∑
j=0

pi,j (u)

(
N −1∑
k=0

(
W −2∑
r=0

λr p
(r)
j,k

)
g(k, 0)

+λW −1
N −1∑
k=0

p
(W −1)
j,k J(s+1)(k)

)}
(17)

for s = 0, 1, 2, . . .. It should be noted that the aforementioned
backward propagation of costs applies to every W transitions
of the Markov chain in which we are permitted to apply inter-
vention and U(i) = {0, 1}.

Similar to Section II-B, the following proposition discusses
how an optimal W -transition stationary control policy can be
devised. In Proposition 4, we prove the convergence of the
discounted cost algorithm as it is defined in this paper. The
proof of the proposition can be found in the supplementary
materials. Propositions 2 and 3 can be restated for the following
operator T .

Proposition 4 (Convergence of discounted cost algorithm):
For any i ∈ S, bounded function J : S �→ 	, and T : S �→ 	,
where

TJ(i)

= min
u∈U (i)


g(i, u)+λ

N −1∑
j=0

pi,j (u)

(
N −1∑
k=0

(
W −2∑
r=0

λr p
(r)
j,k

)
g(k, 0)

+ λW −1
N −1∑
k=0

p
(W −1)
j,k J(k)

)}
(18)

the optimal cost function satisfies

J∗(x) = lim
j ′−→∞

(
TM J

)
(x) ∀x ∈ S.

Propositions 2–4 provide the basis for computational algo-
rithms to determine an optimal W -transition policy. Proposition
2 asserts that the optimal cost function satisfies Bellman’s opti-
mality equation, while Proposition 4 states that the optimal cost
function can be iteratively determined by running the recursion

Js+1 = TJs, s = 0, 1, 2, . . . (19)

for any bounded initial cost function J0 : S �→ 	, an optimal
W -transition policy is found when the iteration converges to the
optimal value of the cost function.

IV. RESULTS AND DISCUSSION

As we mentioned in the Introduction, an optimal one-
transition policy is no longer optimal, i.e., does not necessarily
minimize the expected total discounted cost, if one is restricted
to apply treatment only every W transitions. Nevertheless, we
can apply an optimal one-transition policy every W transitions

and compare the effect and cost of such a policy to the ones
of an optimal W -transition policy, which truly minimizes the
expected total discounted cost.

We anticipate an effective control policy to reduce the like-
lihood of visiting undesirable states as compared to a network
without intervention by modifying the long-run behavior of the
network. The effectiveness of a control policy can be measured
by the amount of change (shift) in the aggregated probability
of undesirable states before and after intervention. We should
emphasize that an optimal policy does not necessarily result in
a maximum shift in the steady-state distribution, as explained
earlier, since we are minimizing the expected total discounted
cost. The amount of shift in the aggregated probability of un-
desirable states before and after intervention can be computed
as

∆PW =
∑

i∈U πi −
∑

i∈U π̃W
i∑

i∈U πi
. (20)

In (20), π̃W
i is the probability of being in undesirable state i in

the long run using a policy that is applied every W transitions. In
this equation, πi is the probability of being in undesirable state
i in the long run when there is no intervention. In other words,
given a Markovian gene regulatory network, one can shift the
aggregated probability of undesirable states to desirable ones
through appropriately altering the expression of the control gene
every W time instants.

Formulation of ∆PW requires the computation of π̃W , i.e.,
the steady-state distribution of the Markov chain under a W -
transition policy µW , a policy that is applied every W transi-
tions. To this end, we derive the transition probability matrix
of the system when a W -transition policy µW is applied. In
general, W possible cases can happen for the transition of state
i to state j in W steps under a cyclic policy depending on the
instants in which states i and j are observed with respect to the
treatment times. Let us denote the transition probability matrix
under the W -transition policy µW by PµW

. In the first case,
there are W − 1 uncontrolled transitions and the corresponding
transition probability matrix is PW −1 . Afterward, in W th tran-
sition, policy µW decides whether to apply control or not. The
system transitions to state j and the corresponding transition
probability matrix is PµW

. Consequently, the transition proba-
bility matrix corresponding to the first case is P(W −1)PµW

. In
the second case, starting from state i, there are W − 2 uncon-
trolled transitions and the corresponding transition probability
matrix is PW −2 . At next transition, policy µW decides whether
to apply control or not and the system transitions according to
the transition probability matrix PµW

. Thereafter, the system
transitions to state j according to the original transition proba-
bility matrix P. The transition probability matrix corresponding
to the second case is P(W −2)PµW

P. Likewise, the transition
probability matrix for W − 2 other cases can be derived. Fig. 1
demonstrates an example for W = 4. As this figure suggests,
four possible cases can happen depending on where state i is
observed with respect to treatment times.

To find the transition probability matrix of the Markov chain
under optimal W -transition policy, one should consider the pos-
sibility of these cases. Since each of these cases are equally
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Fig. 1. Example of cyclic intervention strategy for W = 4. Arrows represent
treatment times. (a)–(d) show the four possible cases that can happen depending
on the instants in which states i and j are observed with respect to treatment
times.

probable, the following transition probability matrix represents
the probabilities of transitions among states when the W -
transition intervention policy µW is applied:

P̂µW
=

1
W

W∑
w=1

P(W −w )PµW
P(w−1) . (21)

The steady-state distribution π̃W is the invariant distribution
of P̂µW

.
In the following sections, we first derive optimal one-

transition and W -transition policies for synthetic networks. We
generate random PBNs with various properties. We vary the
values of bias and connectivity of the PBNs. The bias of a PBN
is the probability that each constituent Boolean function takes
on the value 1 and the connectivity corresponds to the max-
imum number of predictors for each Boolean function. Since
the bias and connectivity affect the dynamical properties of ran-
domly generated Boolean networks (BNs) [14], we take them
as parameters in our simulations. Whenever not specified, the
connectivity of the PBN is 3. Furthermore, we investigate the
effect of the cost of control on each type of policy. The set of
simulations is presented in full in the supplementary materials.
We provide some of these in the sequel. We then present a sim-
ilar investigation for the network obtained from the mammalian
cell-cycle network proposed in [15].

A. Synthetic Networks

We generate random PBNs with seven genes. Each PBN con-
sists of four constituent BNs. For each PBN, the probability
transition matrix of the corresponding Markov chain is com-
puted [3]. Without loss of generality, the target gene is cho-
sen to be the most significant gene in the states. We assume
that the up-regulation of the target gene is undesirable. Conse-
quently, the state space is partitioned into desirable states, D =
{0, . . . , N/2 − 1}, and undesirable states, U = {N/2, . . . , N},
where N represents the total number of states. Since our objec-
tive is to down-regulate the target gene, a higher cost is assigned
to destination states having an up-regulated target gene. We

postulate the following cost-per-stage:

g(u, j) =




0, if u = 0 and j ∈ D
5, if u = 0 and j ∈ U
c, if u = 1 and j ∈ D
5 + c, if u = 1 and j ∈ U

(22)

where c represents the cost of control. Whenever it is not speci-
fied, the cost of control is selected to be zero. Results for various
costs of control are provided in the supplementary materials.
Note that the cost scheme reflects our objective. In practice, the
actual values would have to be assigned by a physician accord-
ing to his or her understanding of the disease.

For each PBN, we vary the value of W from 1 to 10. For each
W , the optimal W -transition policy is derived and the corre-
sponding ∆PW is computed from (21). Given the optimal W -
transition policy, we estimate the average total discounted cost
induced by this policy. To this end, we generate synthetic time-
course data for 1000 time-steps from each PBN model while
the optimal W -transition policy is applied. Using this synthetic
time-course data, we estimate the discounted cost by accumu-
lating the discounted cost of each state given the policy at that
state. This procedure is repeated 10 000 times for random initial
states and the average of the induced discounted cost is com-
puted. Furthermore, the optimal one-transition policy is applied
every W transitions and the corresponding ∆PW is computed
from (21). To compute the average discounted cost of the opti-
mal one-transition policy when it is applied every W transitions,
we generate synthetic time-course data as explained before and
the average total discounted cost of the optimal one-transition
policy is similarly computed. In sum, for each PBN model, we
have the following: (C̄W ) average total discounted cost result-
ing from the optimal W -transition policy; (∆PW ) the value of
∆PW resulting from the optimal W -transition policy; (C̄W,1)
the average total discounted cost of the optimal one-transition
policy when it is applied every W transitions; and (∆PW,1)
the value of ∆PW resulting from the optimal one-transition
policy applied every W transitions. The preceding procedure
is repeated for 1000 random PBNs, thereby yielding 1000
values for each statistic: C̄W

1 , . . . , C̄W
1000 ; ∆PW

1 , . . . ,∆PW
1000 ;

C̄W,1
1 , . . . , C̄W,1

1000 ; ∆PW,1
1 , . . . ,∆PW,1

1000 . Using these, we com-
pare the optimal W -transition and one-transition polices via
the empirical averages M[CW ] of C̄W

1 , . . . , C̄W
1000 ; M[CW,1 ]

of C̄W,1
1 , . . . , C̄W,1

1000 ; M[∆PW ] of ∆PW
1 , . . . ,∆PW

1000 ; and
M[∆PW,1 ] of ∆PW,1

1 , . . . ,∆PW,1
1000 . In addition, for each value

of W , the histograms of the differences C̄W,1
i − C̄W

i and
∆PW

i − ∆PW,1
i , i = 1, . . . , 1000, are also found. We will see

that the means tend to be close, M[CW ] ≈ M[CW,1 ] and
M[∆PW ] ≈ M[∆PW,1 ], but that the histograms of the dif-
ferences have long tails to the right, indicating that there are
cases for which using the optimal one-transition policy can have
strongly detrimental effects.

In the first set of experiments, each constituent BN is ran-
domly generated with a bias, the bias being the probability that
a Boolean function takes on the value 1. We randomly select
the bias b of a BN from a beta distribution. The mean of the
beta distribution is chosen to be 0.3, 0.5, or 0.7. The variance of
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Fig. 2. Comparison of optimal W -transition and one-transition policies based
on the average values of ∆P W and average total discounted cost for W ∈
{1, . . . , 10} for random PBNs with bias mean = 0.3. (a) Average of ∆P W .
(b) Average of discounted cost.

Fig. 3. Comparison of optimal W -transition and one-transition policies based
on the histogram of difference of W -transition and optimal one-transition poli-
cies for W = 5 on random PBNs with bias mean = 0.3. (a) Histogram of ∆P W

associated to optimal W -transition policy minus ∆P W associated to optimal
one-transition policy. (b) Histogram of the average discounted cost associated
to optimal one-transition policy minus the average discounted cost associated to
optimal W -transition policy. (c) Enlarged view of (a). (d) Enlarged view of (b).

the beta distribution, σ2 , is set to a constant value 0.0001. The
average values of ∆PW and the average total discounted costs
for both one-transition and W -transition policies are shown in
Figs. 2 and 4 for bias values of 0.3 and 0.5, respectively. Sim-
ilarly, the histograms of the differences of the two policies in
terms of ∆PW and the average total discounted costs are shown
in Figs. 3 and 5. Similar studies for bias value of 0.7 can be
found in the supplementary materials.

We observe that the average of ∆PW for both policies de-
creases as W increases. This behavior is in accordance with the
intuition that treatments that are further apart in time are less
effective. As we stated in the Introduction, tumors given less
time to grow between treatments are more likely to be eradi-
cated [1]. In the long run, less treatment is applied for a larger
W , and consequently, more cost is induced. Hence, for a fixed
bias, the average discounted costs of both one-transition and
W -transition policies increase as W increases. On average, the
optimal W -transition policy results in lower discounted cost and

Fig. 4. Comparison of optimal W -transition and one-transition policies based
on the average values of ∆P W and average total discounted cost for W ∈
{1, . . . , 10} for random PBNs with bias mean = 0.5. (a) Average of ∆P W .
(b) Average of discounted cost.

Fig. 5. Comparison of optimal W -transition and one-transition policies based
on the histogram of difference of W -transition and optimal one-transition poli-
cies for W = 5 on random PBNs with bias mean = 0.5. (a) Histogram of ∆P W

associated to optimal W -transition policy minus ∆P W associated to optimal
one-transition policy. (b) Histogram of the average discounted cost associated
to optimal one-transition policy minus the average discounted cost associated to
optimal W -transition policy. (c) Enlarged view of (a). (d) Enlarged view of (b).

higher ∆PW as compared to the optimal one-transition policy.
The histograms of the differences of the two policies in terms
of ∆PW and average discounted show how often they generate
similar outcomes and how often the effect of the two policies
differ. Note that the differences are not positive for all PBNs.
This is because the optimal policies minimize the “expected”
total discounted cost. Hence, the W -transition control policy
can induce a larger average discounted cost compared to the
one-transition control policy, but rarely.

In the second set of experiments, we generate constituent
BNs with connectivities 2, 3, and 4. For each connectivity, pre-
dictors and Boolean functions are randomly generated with a
bias b, randomly selected from a beta distribution with mean
0.5. Results of this experiment can be found in the supplemen-
tary materials. Similar to the previous experiment, we observe
that the optimal W -transition policy results in lower average
discounted cost and higher ∆PW as compared to the optimal
one-transition policy. In the third set of experiments, we repeat
the simulations for the cost of control being 0, 0.1, and 0.5.
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Fig. 6. Comparison of optimal W -transition and one-transition policies based
on the average values of ∆P W and average total discounted cost for W ∈
{1, . . . , 10} for random PBNs with control cost = 0.1. (a) Average of ∆P W .
(b) Average of discounted cost.

Fig. 7. Comparison of optimal W -transition and one-transition policies based
on the histogram of difference of optimal W -transition and one-transition poli-
cies for W = 5 on random PBNs when cost of control is 0.1. (a) Histogram
of ∆P W associated to optimal W -transition policy minus ∆P W associated
to optimal one-transition policy. (b) Histogram of the average discounted cost
associated to optimal one-transition policy minus the average discounted cost
associated to optimal W -transition policy. (c) Enlarged view of (a). (d) Enlarged
view of (b).

Results of this experiment for control cost of 0.1 are shown in
Figs. 6 and 7. Further experiments for control cost of 0 and 0.5
can be found in the supplementary materials.

B. Mammalian Cell-Cycle Network

In this section, we construct a PBN that is a probabilistic
version of the Boolean model for the mammalian cell cycle reg-
ulation proposed in [15]. This PBN postulates the mammalian
cell cycle with a mutated phenotype. The proposed intervention
method is then applied to hinder the cell growth in the absence of
growth factors when treatment is allowed every W transitions.

During the late 1970s and early 1980s, yeast geneticists iden-
tified the cell-cycle genes encoding for new classes of molecules,
including the cyclins (so-called because of their cyclic pattern
of activation) and their cyclin dependent kinases (cdk) part-
ners [15]. Our model is rooted in the work of Faure et al., who
have recently derived and analyzed the Boolean functions of the

TABLE I
BOOLEAN FUNCTIONS OF NORMAL MAMMALIAN CELL CYCLE

TABLE II
MUTATED BOOLEAN FUNCTIONS OF MAMMALIAN CELL CYCLE

mammalian cell cycle [15]. The authors have been able to quan-
titatively reproduce the main known features of the wild-type
biological system, as well as the consequences of several types
of mutations.

Mammalian cell division is tightly controlled. In a growing
mammal, the cell division should coordinate with the overall
growth of the organism. This coordination is controlled via ex-
tracellular signals. These signals indicate whether a cell should
divide or remain in a resting state. The positive signals, or growth
factors, instigate the activation of Cyclin D (CycD) in the cell.

The key genes in this model are CycD, retinoblastoma (Rb),
and p27. Rb is a tumor-suppressor gene. This gene is expressed
in the absence of the cyclins, which inhibit the Rb by phospho-
rylation. Whenever p27 is present, Rb can be expressed even
in the presence of CycE or CycA. Gene p27 is active in the
absence of the cyclins. Whenever p27 is present, it blocks the
action of CycE or CycA. Hence, it stops the cell cycle. Table I
summarizes the Boolean functions of the wild-type cell cycle
network.

The preceding explanation represents the wild-type cell-cycle
model. Following one of the proposed mutations in [15], we
assume p27 is mutated and its logical rule is always zero (OFF).
In this cancerous scenario, p27 can never be activated. As we
mentioned earlier, whenever p27 is present, Rb can be expressed
even in the presence of CycE or CycA. For the mutated cell cycle
network, p27 is always zero and Rb cannot be expressed in a case
where CycD is not present but CycE or CycA are active [15].
This mutation introduces a situation where both CycD and Rb
might be inactive. As a result, in this mutated phenotype, the
cell cycles in the absence of any growth factor. In other words,
we consider the logical states in which both Rb and CycD are
down-regulated as “undesirable states,” when p27 is mutated.
Table II summarizes the mutated Boolean functions.

The Boolean functions in Table II are used to construct the
PBN model for the cell cycle. To this end, we assume that the ex-
tracellular signal to the cell-cycle model is a latent variable. The
growth factor is not part of the cell and its value is determined
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Fig. 8. Comparison of optimal W -transition and one-transition policies based
on the values of ∆P W and average total discounted cost for W ∈ {1, . . . , 10}
for the mammalian cell-cycle network. (a) ∆P W . (b) Average of total dis-
counted cost.

by the surrounding cells. The expression of CycD changes in-
dependently of the cell’s content and reflects the state of the
growth factor. Depending on the expression status of CycD, we
obtain two constituent Boolean networks for the PBN. The first
constituent Boolean network is determined from Table II when
the value of CycD is equal to zero. Similarly, the second con-
stituent Boolean network is determined by setting the variable
of CycD to one. To completely define the PBN, the switch-
ing probability, the perturbation probability, and the probability
of selecting each constituent Boolean network have to be speci-
fied. We assume that these are known. Here, we set the switching
probability and the perturbation probabilities equal to 10−3 , and
the two constituent Boolean networks are equally likely.

According to Table II, the cell-cycle PBN consists of nine
genes: CycD, Rb, E2F, CycE, CycA, Cdc20, Cdh1, UbcH10,
and CycB. The aforementioned order of genes is used in the
binary representation of the logical states, with CycD as the
most significant bit and CycB as the least significant bit. This
order of genes in the logical states facilitates the presentation of
our results and does not affect the computed control policies.

Having CycD and Rb as the most significant genes, we as-
sume that the down-regulations of the CycD and Rb, i.e., the cell
growth in the absence of growth factors, is undesirable. Con-
sequently, the state space is partitioned into undesirable states
and desirable states. Application of the proposed method, or any
of the other methods developed for control of gene regulatory
networks, requires the designation of desirable and undesirable
states, and this depends upon the existence of relevant biologi-
cal knowledge. In the cell-cycle example when p27 is mutated,
we consider the logical states in which both Rb and CycD are
down-regulated as undesirable states. We assume that the cost
of the logical states with down-regulated Rb and CycD is higher
than that for the states in which these two genes are not simul-
taneously down-regulated. The costs of undesirable states and
control are defined as in (22).

The value of ∆PW and the average total discounted cost for
both optimal one-transition and W -transition policies derived
for the cell-cycle network are shown in Fig. 8. In the long run,
less treatment is applied for a larger W , and consequently, more
cost is induced. Hence, the average discounted costs of both
optimal one-transition and W -transition policies increase as W
increases. It should be noted that the previous experiments show
the average behavior of 1000 random PBNs, while this experi-

ment considers the behavior of one network, i.e., the mammalian
cell-cycle network. In this instance, the optimal one-transition
and W -transition policies are close to parity for the cell-cycle
network.

V. CONCLUSION

In this paper, our objective has been to devise an effective
intervention strategy under the constraint that intervention is
permitted only after a recovery period. To incorporate the cyclic
constraint on interventions, we have constructed a Markov chain
with an augmented state space based on the original Markov
chain associated with a gene regulatory network. We have shown
how to derive an optimal W -transition policy for the Markov
chain with the augmented state space via dynamic programming
algorithms. The dynamic programming approach can be com-
putationally prohibitive due to the size of the augmented state
space. To mitigate this computational burden, we can collapse
the augmented state space into the original state space of the
unconstrained Markov chain. Despite this reduction in the size
of the state space, the application of our proposed method is still
restricted to small number of genes since the complexity of the
dynamic programming algorithm increases exponentially with
the number of genes. We point out, however, that in our appli-
cation of interest, intervention in gene regulatory networks, the
goal is not to model fine-grained molecular interactions among
a host of genes, but rather to model a limited number of genes,
typically with very coarse quantization, whose regulatory activ-
ities are significantly related to a particular aspect of a specific
disease.

In the result section, we have compared the average total
discounted cost and ∆PW of optimal one-transition and W -
transition policies for random PBNs with various properties.
We have also considered the histogram of the difference of
∆PW generated by the two policies along with the histogram
of the difference between the average discounted costs of the
two policies. It is evident from Figs. 2, 4, and 6 that the op-
timal W -transition policy, on average, induces lower cost and
higher ∆PW as compared to the optimal one-transition policy.
However, the discounted cost and ∆PW corresponding to the
optimal one-transition policy is very close to the correspondents
of the optimal W -transition policy. The histograms of the differ-
ence between the two policies in terms of ∆PW and the average
discounted cost are shown in Figs. 3, 5, and 7. These figures sug-
gest that the performance of these two policies are, on average,
close to parity (substantial mass on 0, where the two policies are
identical), but that there are PBNs for which the two policies are
distinct, on occasion, significantly so. These observations apply
across PBNs possessing various properties—bias, connectivity,
and cost of control.
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