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Probabilistic Boolean Networks (PBNs) were recently introduced as models of gene
regulatory networks. The dynamical behavior of PBNs, which are probabilistic generali-
zations of Boolean networks, can be studied using Markov chain theory. In particular,
the steady-state or long-run behavior of PBNs may reflect the phenotype or functional
state of the cell. Approaches to alter the steady-state behavior in a specific prescribed
manner, in cases of aberrant cellular states, such as tumorigenesis, would be highly
beneficial. This paper develops a methodology for altering the steady-state probabilities
of certain states or sets of states with minimal modifications to the underlying rule-based
structure. This approach is framed as an optimization problem that we propose to solve
using genetic algorithms, which are well suited for capturing the underlying structure of
PBNs and are able to locate the optimal solution in a highly efficient manner. Several
computer simulation experiments support the proposed methodology.
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1. Introduction

It is becoming widely recognized that the study and modeling of genetic regula-

tory networks carries tremendous potential for gaining a deep understanding of

biological processes and ergo, for developing effective therapeutic intervention in

human diseases such as cancer. This inevitably entails using computational and

formal methods in order to understand general principles governing the system

under study and to make useful predictions about system behavior in the presence

of known conditions.

Recently, a new class of models, called Probabilistic Boolean Networks (PBNs),

was introduced as a model of gene regulatory networks [12]. This model class in-

corporates rule-based dependencies between genes, allows the systematic study

of global network dynamics, is able to cope with uncertainty, and permits the

quantification of the relative influence and sensitivity of genes in their interac-

tions with other genes. The dynamics of these networks can be studied in the
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probabilistic context of Markov chains. They also exhibit an important connection

with Bayesian Networks — another model class that has been recently used to

model gene expression data. PBNs represent an interface between the absolute de-

terminism of Boolean networks and the probabilistic nature of Bayesian networks, in

that they incorporate rule-based uncertainty. This compromise is important because

rule-based dependencies between genes are biologically meaningful, while mecha-

nisms for handling uncertainty are conceptually and empirically necessary.

The dynamical properties of PBNs were further studied in [13], which consi-

ders the general question of the potential effect of individual genes on the global

dynamical network behavior, both from the view of random gene perturbation as

well as intervention in order to elicit desired network behavior. Namely, it develops

a model for random gene perturbations and an explicit formula for the transition

probabilities.

This result provides a building block for performing simulations and deriving

other results concerning network dynamics. For example, the problem of (gene)

intervention has been addressed via the development of several computational tools

based on first-passage times in Markov chains. The consequence is a methodology

for finding the best gene with which to intervene in order to most likely achieve de-

sirable network behavior. In addition, the effect of gene perturbations on long-run

network behavior has been assessed by providing a bound on the steady-state

probabilities in terms of the probability of perturbation. This result demonstrates

that states of the network that are more “easily reachable” from other states are

more stable in the presence of gene perturbations. Such states are hypothesized to

correspond to cellular functional states — a view that is in accord with existing

findings [5, 6].

The type of intervention described in [13] — one that allows us to intervene

with the value of a gene — can be useful for modulating the dynamics of the

network, but it is not able to alter its underlying structure. Accordingly, the sta-

tionary distribution remains unchanged. However, a disbalance between certain sets

of states, which is characteristic of neoplasia in view of gene regulatory networks,

can be caused by mutations of the “wiring” of certain genes, thus permanently

altering the state-transition structure and, consequently, the long-run behavior of

the network [5].

Therefore, it is prudent to develop a methodology for altering the steady-state

probabilities of certain states or sets of states with minimal modifications to the

rule-based structure. The motivation is that these states may represent different

phenotypes or cellular functional states, such as cell invasion and quiescence, and

we would like to decrease the probability that the whole network will end up in

an undesirable set of states and increase the probability that it will end up in a

desirable set of states. The mechanism by which we accomplish this consists of

altering some Boolean functions (predictors) in the PBN. An additional goal is to

alter as few functions as possible. Such alterations to the rules of regulation may

be possible by the introduction of a factor or drug that alters the extant behavior.

Let us give an example.
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We know that women can age much faster after menopause. In developed coun-

tries, estrogen is often taken by women after menopause to alter this trend. However,

the dose of estrogen is important because an overdose may increase the probabilities

of developing breast and ovarian cancers. Although the mechanism is not clear yet,

it is conceivable that this phenomenon has its gene regulation basis. Estrogen binds

its receptors, the complex gets transported into the nucleus to bind the enhancer

element (a short stretch of regulatory DNA sequence) on the target genes, and

functions as transcriptional factors affecting genes such as the preproenkephalin

(PENK) gene [14]. Interestingly, there are several different estrogen receptors that

compete with each other for binding estrogen as well as for coactivator, which

is also required for efficient transcriptional regulation by estrogen [16]. It can be

envisioned that estrogen binds one receptor better than another and that these

complexes bind DNA and coactivator with opposite efficiency. That is, complex C1

binds DNA better than complex C2, but complex C2 binds the coactivator better

than complex C1. Thus, under low estrogen conditions, when there is not much

competition for DNA binding, there would be sufficient binding of C2 to DNA

so as to turn on the downstream target gene. However, when estrogen is present

at high concentration, both complexes exist at very high levels and complex C2,

taking up most of the coactivator away from C1, would have little chance to bind

to DNA. Consequently, the better DNA binding complex (C1) would not have the

necessary coactivator to activate the target gene. If the target gene plays a role in

tumor suppression, for instance, this could explain why high levels of estrogen have

a tumorigenic effect. Thus, by changing the concentration of estrogen, one is able

to alter the rule determining the value of a gene (e.g., PENK) in terms of the levels

of estrogen receptor complexes C1 and C2.

For example, under a low estrogen condition, assuming Boolean values for all

genes, PENK can be expressed as PENK = C1 ∨ C2, where the symbol ∨ means

logical OR. That is, the presence of at least one complex (C1 or C2) would be

sufficient to turn on PENK. However, under a high estrogen condition, in view of

the above squelching effect, PENK = C1⊕ C2, where the symbol⊕means exclusive

OR. That is, when either C1 or C2 are individually present, with no competition

from the other, PENK is turned on, but when both C1 and C2 are present together,

PENK becomes turned off. The ability to alter such rules would provide a means

of at least partially controlling the steady-state behavior of the network.

In this paper, we develop formal methods and algorithms for addressing such

problems. In Sec. 2, we briefly review the background material for Probabilistic

Boolean Networks. Section 3 formalizes the problem described above in terms of

an optimization problem. Finally, Sec. 4 describes a solution to this problem via

genetic algorithms. We have performed several computer simulation experiments to

assess the efficiency of the proposed methodology.
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2. Definitions and Background Material

We will give the basic definitions and notations for PBNs and refer the reader to [12]

for more details and examples. A PBN G(V, F ) is defined by a set of binary-valued

nodes V = {x1, . . . , xn} and a list F = (F1, . . . , Fn) of sets Fi = {f (i)
1 , . . . , f

(i)
l(i)} of

Boolean functions. Each node xi ∈ {0, 1} represents the state (expression) of gene

i, where xi = 1 means that gene i is expressed and xi = 0 means it is not expressed.

The set Fi represents the possible rules of regulatory interactions for gene xi. That

is, each f
(i)
j : {0, 1}n → {0, 1} is a possible Boolean function determining the value

of gene xi in terms of some other genes and l(i) is the number of possible functions

for gene xi. We will also refer to the functions f
(i)
j as predictors. Thus, any given gene

transforms its inputs (regulatory factors that bind to it) into an output, which is the

state or expression of the gene itself. All genes (nodes) are updated synchronously

in accordance with the functions assigned to them and this process is then repeated.

At any given time step, one of the predictors for gene xi is selected randomly from

the set Fi, according to a predefined probability distribution, discussed below.

A realization of the PBN at a given instant of time is determined by a vector

of Boolean functions. If there are N possible realizations, then there are N vector

functions, f1, f2, . . . , fN of the form fk = (f
(1)
k1
, f

(2)
k2
, . . . , f

(n)
kn

), for k = 1, 2, . . . , N ,

1 ≤ ki ≤ l(i) and where f
(i)
ki
∈ Fi (i = 1, . . . , n). In other words, the vector function

(also called multiple-output function) fk : {0, 1}n → {0, 1}n acts as a transition

function (mapping) representing a possible realization of the entire PBN. Thus,

given the values of all genes (x1, . . . , xn), fk(x1, . . . , xn) = (x′1, . . . , x
′
n) gives us

the state of the genes after one step of the network given by the realization fk. If

the predictor for each gene is chosen independently of other predictors, then N =∏n
i=1 l(i). It should be noted that each predictor function f

(i)
j typically has many

fictitious variables. That is, although the domain of each predictor is {0, 1}n, there

are only a few input genes that actually regulate gene xi at any given time, implying

that each predictor is a simple one. The biological and practical justifications for

probabilistically choosing one of several simple predictors for each gene are discussed

in [12].

Let f = (f (1), . . . , f (n)) be a random vector taking values in F1×· · ·×Fn. That

is, f can take on all possible realizations of the PBN. Then, the probability that

predictor f
(i)
j is used to predict gene i (1 ≤ j ≤ l(i)) is equal to

c
(i)
j = Pr{f (i) = f

(i)
j } =

∑
k:f

(i)
ki

=f
(i)
j

Pr{f = fk} . (1)

An approach for obtaining the probabilities c
(i)
j from gene expression data, using

the coefficient of determination [1, 10, 11] and in turn for using these probabilities

to compute the probability that a particular network realization is selected, is dis-

cussed in [12]. It was also shown that the dynamics of PBNs can be modeled by

Markov chains, consisting of 2n states.
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Further, an extension to the PBN model permitting so-called gene perturba-

tions was proposed in [13], allowing any out of n possible genes to get perturbed

with probability p, independently of other genes. In the Boolean setting, this is

represented by a flip of value from 1 to 0 or vice versa and directly corresponds

to the bit-flipping mutation operator in NK Landscapes [8, 9] as well as in genetic

algorithms and evolutionary computing [2]. This situation is modeled as follows.

Suppose that at every step of the network, we have a realization of a so-called

random perturbation vector γ ∈ {0, 1}n. If the ith component of γ is equal to 1,

then the ith gene is flipped, otherwise it is not. In general, γ need not be inde-

pendent and identically distributed (i.i.d.), but we will assume this for now on for

simplicity. Thus, we will suppose that Pr{γi = 1} = E[γi] = p for all i = 1, . . . , n.

Let x = (x1, . . . , xn) be the state of the network (i.e., values of all the genes) at

some given time. Then, the next state x′ is given by

x′ =

{
x⊕ γ , with probability 1− (1− p)n

fk(x1, . . . , xn) , with probability (1− p)n
, (2)

where ⊕ is component-wise addition modulo 2 and fk(x1, . . . , xn), k = 1, 2, . . . , N ,

is the transition function representing a possible realization of the entire PBN. The

state transition matrix of the Markov chain can be expressed in terms of the Boolean

functions and the probabilities of different network realizations, which are given in

terms of c
(i)
j in (1) [13]. The availability of the state transition matrix, in turn,

allows us to compute the stationary probabilities π(x) of all states x ∈ {0, 1}n. For

large networks, computing the stationary probabilities via the transition matrix is

impractical and Monte Carlo techniques can be used. It is relatively straightforward

to show that for p > 0, the Markov chain corresponding to the PBN is ergodic [13].

Consequently, this fact simplifies the analysis of long-term behavior of the network.

3. Problem Setting

Consider two sets of states A, B ⊆ {0, 1}n. As mentioned above, each state

x ∈ {0, 1}n has a positive stationary probability π(x). Thus, we can define

π(A) =
∑
x∈A π(x) and π(B) similarly. Suppose that we are interested in altering

the stationary probabilities of these two sets of states in such a way that the station-

ary probability of A is decreased and the stationary probability of B is increased

by 0 < λ < 1.a As already mentioned above, these two states may represent two

different cellular functional states or phenotypes. In order to achieve this, suppose

we alter function f
(i0)
j0

by replacing it with a new function g
(i0)
j0

. The probability

c
(i0)
j0

corresponding to g
(i0)
j0

must remain the same as for f
(i0)
j0

, since
∑l(i)
j=1 c

(i)
j = 1.

aWe could have also stated the problem in a more general manner, where instead of decreasing
the stationary probability of A by λ and increasing that of B by λ, we would have specified the
desired stationary probabilities of A and B separately, under the obvious constraint that their
sum be less than or equal to 1. Indeed, this is what we will do in the simulation section.
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Table 1. Truth tables of the predictors for the PBN in our example. The selection probabilities
of each predictor are shown on the bottom row.

x1x2x3 f
(1)
1 f

(1)
2 f

(2)
1 f

(3)
1 f

(3)
2

000 0 0 0 0 0
001 1 1 1 0 0
010 1 1 1 0 0
011 1 0 0 1 0
100 0 0 1 0 0
101 1 1 1 1 0
110 1 1 0 1 0
111 1 1 1 1 1

c
(i)
j 0.6 0.4 1 0.5 0.5

Thus, we have a new PBN whose stationary distribution we can denote by µ. Let

µ(A) and µ(B) be the stationary probabilities of sets A and B under the altered

PBN model. We can then pose the following optimization problem:

Given sets A and B, predictor functions f
(i)
j together with their selection proba-

bilities c
(i)
j , i = 1, . . . , n, j = 1, . . . , l(i), and λ ∈ (0, 1), select an i0, j0, and a

function g
(i0)
j0

to replace f
(i0)
j0

such that

ε(π(A) − λ, µ(A)) (3)

and

ε(π(B) + λ, µ(B)) (4)

are minimumb among all i, j, g
(i)
j . Here, ε(a, b) represents some chosen error func-

tion, such as the absolute error (i.e., ε(a, b) = |a− b|). An additional constraint can

be that g
(i0)
j0

has no more essential variables than f
(i0)
j0

. In this scenario, we are only

allowing the alteration of one predictor function. More generally, we can preselect

a number of predictor functions that we are willing to alter.

Let us illustrate these ideas with a small concrete example. We will use the

same example as Example 1 in [12]. For convenience, we show the truth tables of

the predictors and their selection probabilities in Table 1.

Assuming no perturbations (p = 0), the state transition diagram is shown

in Fig. 1. As can be seen from this figure, two states, namely (000) and (111)

are absorbing states. Let us hypothesize, for the sake of this example, that (111)

corresponds to cell invasion (and rapid proliferation) and state (000) corresponds to

quiescence. Let us fix a probability of perturbation p = 0.01. Then, a simple analysis

based on the probability transition matrix reveals that the stationary probabilities

of states (000) and (111) are 0.0752 and 0.7310, respectively. Thus, in the long run,

the network will be in quiescence only 7% of the time and will be in proliferation 73%

bSince we want both (3) and (4) to be minimum, we can construct a single objective function that
incorporates both. For example, the sum of the two functions would be an obvious choice.
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Fig. 1. State transition diagram (probability of perturbations is equal to zero).

of the time. Now, suppose we wish to alter this imbalance and require for the two

stationary probabilities to be approximately 0.4 for both (000) and (111). The other

6 states will then be visited only 20% of the time. In the framework of the above

optimization problem, A = {(111)}, B = {(000)}, π(A) = 0.7310, π(B) = 0.0752,

µ(A) = µ(B) = 0.4, and λ = 0.3279. Finally, suppose we are allowed to change

only one predictor function. In the truth tables shown in Table 1, this corresponds

to changing only one of the columns, while keeping the selection probabilities c
(i)
j

unchanged. Thus, there are 5 possible columns (predictors) and 256 possibilities

for each.

For the purposes of this example, we have generated each of the 5 × 256 =

1280 possible alterations. For each, we have computed and plotted the stationary

probabilities µ(000) and µ(111), shown in Fig. 2. The optimal values of µ(000)

and µ(111) for the error function ε(a, b) = |a − b| are indicated by an arrow. The

objective function to be minimized is

|µ(000)− 0.4|+ |µ(111)− 0.4| , (5)

which corresponds to the sum of the two objective functions in (3) and (4). The

colors of the circles represent which predictor was altered. For example, the color

red denotes that predictor f
(1)
1 was altered.

In this example, the optimal predictor is the one that alters f
(1)
2 for gene 1

(column 2 in the truth tables) and the truth table of the optimal predictor is

(00010101)T . This predictor achieves the stationary probabilities µ(000) = 0.4068

and µ(111) = 0.4128, which are quite close to the desired probabilities. The struc-

ture of the plot in Fig. 2 reveals an interesting phenomenon: the two stationary prob-

abilities exhibit regularities, forming clusters of points arranged in a linear fashion,

with different directions. In fact, this phenomenon has been observed in numerous
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Fig. 2. Each circle represents one of the 1280 possible alterations to the predictors. The x-axis
is µ(000) and the y-axis is µ(111). The optimal choice is shown with an arrow, as it comes closest
to 0.4 for both stationary probabilities. The colors of the circles represent the predictor that is
altered (see legend).

examples. As another example, Fig. 3 shows a 3-D scatter plot, corresponding to

stationary probabilities of three different states, for a randomly generated PBN

with 3 genes and 3 predictors per gene (a total of 9 predictors). As in Fig. 2, each

circle represents the stationary probabilities after one of the predictors has been

altered and the color of each circle represents which of the predictors got altered.

It is apparent, at least qualitatively, that the alterations of different predictors

tend to occupy different parts of the space, implying that for a given predictor, there

is a certain “range of action” that can be achieved by manipulating it. These facts, in

turn, seem to suggest that a brute-force search for the optimal predictor alteration

may very well be avoided. That is, a number of search directions should be followed

simultaneously and the more promising ones should be explored further. Such a

strategy is the hallmark of genetic algorithms (GAs), which have been successfully

used in many optimization problems [2]. We turn to this next.

4. Solution via Genetic Algorithms

GAs, first pioneered by John Holland [4], are abstractions of biological evolution. In

a GA, a population of chromosomes, which are represented as binary vectors (cf.,
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Fig. 3. Stationary probabilities of three different states, for a random PBN with 3 genes and 3
predictors per gene. Each circle represents the stationary probabilities after an alteration of one
of the predictors. The color represents which of the predictors is altered.

truth tables of our gene predictors), moves to a new population of chromosomes

using “natural selection” strategies, such as crossover and mutation. Some chro-

mosomes are “selected” and allowed to reproduce and the more “fit” chromosomes

produce more offspring. “Recombination” is achieved via the crossover operator,

which exchanges parts of two chromosomes. Mutation can randomly change some

of the locations or “alleles” (genes) in the chromosome and is very much like the

perturbation in our Probabilistic Boolean Networks.

Chromosomes are used to encode possible solutions to an optimization problem.

At each stage in a search for a solution, the choice of the possible chromosomes

depends on the results of the previous stage of the search. That is, if the “parents”

represent promising solutions in different regions of the search space, then their

“offspring”, produced by recombination, are likely to be promising solutions as

well. The quality of a solution (chromosome) is represented by its fitness, which in

the case of an optimization problem, is the value of the objective function, such as

in (5), at that proposed solution.

The general operation of a GA can be described as follows. First, an initial

population of chromosomes (encoded as binary vectors of a certain length) is gen-

erated and the fitness of each chromosome is calculated. Then, a pair of parent

chromosomes is selected such that more fit chromosomes are more likely to be se-

lected. With a certain probability, the two parents are recombined via the crossover
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operator at a random point (locus) in the chromosomes, producing two offspring.

If the parents are not recombined, then their offspring are identical copies of the

parents. Finally, the offspring are mutated at each locus with a certain mutation

probability. This process is repeated until the number of offspring is equal to the

number of parents and the old population is replaced by the new population, form-

ing a new “generation”. GAs typically make no assumptions about the character-

istics of the problem, such as continuity or differentiability, and are well-suited for

multi-modal function optimization as they are much less likely to get stuck in local

optima. Thus, they are quite promising for finding good solutions to the problem

described in Sec. 3.

Let us return to the example we considered above. A candidate solution

essentially consists of two parts: the choice of the predictor to be altered (here,

we have a total of N = 5 choices) and the truth table of the new, altered predictor.

The former can be coded with dlog2Ne bits and the latter with 2k bits, where k is

the maximum number of input variables over all predictors. In the above example,

N = 5 and k = 3, so each candidate solution (chromosome) would be encoded with

dlog2 5e+23 = 11 bits. One minor inconvenience is the fact that 3 bits is more than

we need to code the choice of the predictor (5 possibilities). Thus, the mapping

between the length-3 binary strings and the integers 1, . . . , 5 should be as uniform

as possible so as to avoid certain predictors being chosen more often than others.

This means that several different length-3 binary strings will code for the same

integer. Of course, if N is a power of 2, this problem does not exist.

By applying a GA to this example, using the above encoding scheme and a

fitness function given in (5), we obtained the correct result (f
(1)
2 = (00010101)T)

typically after about 300 fitness function evaluations. Thus, only 300/1280 ≈ 23%

of the work is performed, compared to the brute-force approach, even for such a

small example. This is no small gain, considering that every fitness function evalua-

tion entails recomputing the entire state-transition matrix and then finding its left

eigenvector to obtain the stationary probabilities. When the numbers of genes and

predictors per gene get large, the advantages of GAs should become dramatically

more apparent. For example, in [7], GAs were used to design two-dimensional cel-

lular automata for a density classification task. In that work, the search space

consisted of 2512 states — a hyper-astronomical number that is not even remotely

enumerable. Yet, the GA was able to find good solutions in a reasonable amount

of time. Let us illustrate the approach with some more computer experiments.

4.1. Computer experiments

One of our goals is to assess the efficiency of the GAs for the problem of determining

the optimal predictor, in terms of controlling the stationary probabilities of certain

states. We measure the efficiency by counting the number of fitness function evalua-

tions performed until the GA finds the correct predictor and dividing that number

by the total number of possible predictor alterations. We note that many times,
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there are several optimal solutions. For example, it is possible that two different

predictors (truth tables) for the same gene, or even for different genes, can produce

the same value of the objective function (i.e., the same stationary probabilities).

Any of these optimal solutions is considered to be the correct one.

As a first experiment, we constructed PBNs consisting of n = 4 genes, l(i) = 2

(i = 1, . . . , 4) predictors for each gene, and k = 2 input variables per predictor. We

also observed the dependence of the efficiency on the probability of perturbation

p. Thus, we have varied p between 10−4 and 10−1 in a logarithmically spaced

manner. In total, 10 values of p were used. For each value of p, we constructed

100 randomly generated PBNs with the above parameters. For each PBN, we first

found the optimal predictor alterations using a brute-force enumeration. Then, we

applied the GA and recorded the number of fitness function evaluations necessary

to obtain the optimal solution. The objective function was similar to the one in

Eq. (5), except that the stationary probabilities of (0000) and (1111) were desired

to be as small as possible (i.e., close to zero). In other words, the function to be

minimized was µ(0000) + µ(1111).

The results are shown in Fig. 4. The horizontal axis shows the different values

of p. The vertical axis shows the number of evaluations necessary for the GA to
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Fig. 4. A box and whisker plot showing the results of the computer experiment. The probability
of perturbation logarithmically ranged between p = 0.0001 and p = 0.1. For each value of p, 100
random PBNs with 4 genes, 2 predictors for each gene, and 2 input variables per predictor, were
produced. The vertical axis shows the number of fitness function evaluations necessary for the GA
to obtain the optimal solution. The dotted line shows the mean number of evaluations.
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obtain the optimal solution. The box and whisker plots have the usual meaning: they

show the lower quartile, median, and upper quartile, and the whiskers extend to

1.5 times the inter-quartile range (IQR). The symbols “+” indicate those values that

are beyond the ends of the whiskers. Finally, the dotted line shows the mean number

of evaluations, for each value of p. On the average, the GA finds the optimal solution

in much fewer steps than is required by brute-force enumeration. For example, for

p = 0.0001, the median number of evaluations is 29, whereas the total number of

possibilities is 128 — a 23% efficiency. At the same time, we see cases where the GA

obviously failed. For example, for p = 0.0001, there are three cases which required

more than 128 evaluations to obtain the optimal solution — in those cases, the GA

was worse than a brute-force enumeration. Because the GA is a stochastic search

method, such cases will always exist. The real advantage of GAs comes from the

fact that they perform quite well most of the time.

We also see that the number of necessary evaluations tends to increase somewhat

as a function of p. This can be seen from the medians as well as the means. One

possible explanation of this phenomenon is that as p is increased, the underlying

“structure” of the PBN becomes effaced and it is this very structure that the

GA replies upon to quickly locate the optimum. Indeed, if we increase p to the

unrealistically high value of p = 0.5, meaning that every gene gets determined by a

fair coin flip, we would expect the GA to amount to nothing more than a random

search. Finally, we also observe an increased IQR, with increasing p. Using the same

reasoning as above, the ability of the GA to locate the optimal solution becomes

compromised due to increased prevalence of randomness in the data.

Let us illustrate our approach with another simple example. Consider a PBN

with n = 5 genes. We will use only one predictor per gene and will allow each

predictor to have a full set of 5 input variables. Thus, the PBN is, in fact, a de-

terministic Boolean network. Since there are 5 predictors and each predictor has a

truth table containing 32 bits, there are 232 × 5 ≈ 21 billion possible alterations.

Clearly, even for this simple example, doing a full combinatorial search for the

optimal alteration would be highly impractical.

Having generated a random PBN, with a perturbation probability of p = 0.001,

we can compute its stationary distribution vector, which is shown in Fig. 5(a). As

can be seen, this particular PBN has a probability of almost 1 of being in state

(11010) (26 in decimal), in the long run. The only reason this probability is not

exactly equal to 1 is because of perturbations (each gene gets flipped one in a

thousand times). The network can find itself occasionally in other states, which

consequently have very small, but non-zero stationary probabilities.c Since this

network is just a deterministic Boolean network, the state (11010) is called an

attractor or fixed point [9, 15]. Since there is only one such attractor, all the other

states constitute its basin of attraction. Now, suppose that we would like to change

the network, by changing only one rule (predictor), such that state (11101) (29 in

cIn fact, we can say that limp→0 π(11010) = 1 and limp→0 π(x) = 0 for all x 6= (11010).
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Fig. 5. (a) The stationary distribution vector for a Boolean network with 5 genes and p = 0.001.
The only attractor is state (11010). (b) The stationary distribution vector after only one predictor
is changed such that (11101) becomes the new attractor.

decimal) becomes the new and only attractor. Now, although we know that this

is possible in advance, because of the way we have designed the network, the real

test is to see whether the GA is able to determine the correct predictor. As an

objective function, we used the Euclidean (L2) norm between the solution and the

length 32 unit vector that has a 1 in position 29. The GA finds the correct gene and

determines the 32-bit truth table for its predictor after about 200 evaluations of the

objective function. This is quite remarkable considering that there are over 21 billion

possibilities. The resulting stationary distribution vector is shown in Fig. 5(b).

5. Concluding Remarks

We have developed a formalism for controlling long-run behavior of Probabilistic

Boolean Networks. The formalism is, in fact, quite generic in the sense that any

objective function, using any number of states and any number of possible predic-

tors to be modified can be specified. Section 4.1 contains an example specifying

the desired stationary probabilities for two particular states and another example

specifying the stationary behavior for all states. The control of long-run behavior is

accomplished by structural manipulation of the underlying rules of the network. In

view of genetic regulatory networks, it is advisable to minimize this type of struc-

tural manipulation as much as possible, which translates into limiting the number of

gene predictors that can be simultaneously modified or altered. Clearly, this seems

to work against the goals of the optimization — the fewer choices we have (at any

one particular time), the less power we have to alter the long-run behavior of the

network. Thus, it may be the case that, given the constraints on the number of

predictors that can be simultaneously altered, some solutions may not be feasible.

However, in practice, we would only be interested in approximate solutions. For



November 19, 2002 11:31 WSPC/129-JBS 00070

444 Shmulevich, Dougherty & Zhang

example, if we wish to make the stationary probability of a certain (undesirable)

state be zero, we would be content if it was simply close to zero. Thus, many “nearly

optimal” solutions may exist. Genetic algorithms indeed do not always guarantee

a global optimum, but may find many good sub-optimal solutions, as they explore

a number of promising regions of the search space.

In addition, we may wish to only allow the use of predictors belonging to a

certain class of Boolean functions, such as canalizing functions or functions with

a limited number of input variables. We can even insist that the new, altered pre-

dictor must have the same input variables as the predictor it is replacing. It is

quite straightforward to incorporate such constraints during the GA optimization

stage. Finally, for larger networks, parallel implementations of genetic algorithms

can significantly improve the performance [3]. In such algorithms, a number of

sub-populations evolve in parallel and some highly fit individuals can migrate

between sub-populations. This carries additional benefit in that migrants from other

sub-populations, which have evolved independently, help maintain genetic diver-

sity. Perhaps not surprisingly, genetic algorithms, themselves inspired by biological

evolution, hold great promise for tackling challenging problems in biology.
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