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Abstract

A cluster operator takes a set of data points and partitions the points into clusters (subsets). As with any scientific model, the scientific
content of a cluster operator lies in its ability to predict results. This ability is measured by its error rate relative to cluster formation. To
estimate the error of a cluster operator, a sample of point sets is generated, the algorithm is applied to each point set and the clusters
evaluated relative to the known partition according to the distributions, and then the errors are averaged over the point sets composing
the sample. Many validity measures have been proposed for evaluating clustering results based on a single realization of the random-
point-set process. In this paper we consider a number of proposed validity measures and we examine how well they correlate with error
rates across a number of clustering algorithms and random-point-set models. Validity measures fall broadly into three classes: internal
validation is based on calculating properties of the resulting clusters; relative validation is based on comparisons of partitions generated
by the same algorithm with different parameters or different subsets of the data; and external validation compares the partition generated
by the clustering algorithm and a given partition of the data. To quantify the degree of similarity between the validation indices and the
clustering errors, we use Kendall’s rank correlation between their values. Our results indicate that, overall, the performance of validity
indices is highly variable. For complex models or when a clustering algorithm yields complex clusters, both the internal and relative
indices fail to predict the error of the algorithm. Some external indices appear to perform well, whereas others do not. We conclude that
one should not put much faith in a validity score unless there is evidence, either in terms of sufficient data for model estimation or prior
model knowledge, that a validity measure is well-correlated to the error rate of the clustering algorithm.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Data clustering has been used for decades in image pro-
cessing and pattern recognition [1,2], and in recent years
has become a popular technique in genomic studies using
gene-expression microarrays [3–6]. Time-series clustering
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groups together genes whose expression levels exhibit sim-
ilar behavior through time. Similarity is taken to indicate
possible co-regulation. Another way to use expression data
is to take expression profiles over various tissue samples,
and then cluster these samples based on the expression lev-
els for each sample. This approach offers the potential to
discriminate pathologies based on their differential patterns
of gene expression.

Despite the popularity of clustering, until very recently
scant attention has been paid to what exactly is meant by the
output of a clustering algorithm. A cluster operator takes a
set of data points and partitions the points into clusters (sub-
sets). But what is the meaning of the result? Is there more
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than simply a picture? Is there any scientific content? Can
it be argued that one clustering procedure is better than an-
other? All of these questions point to the epistemological
basis of clustering [7]. Unless clustering leads to predictions
that can be tested with physical data, it lacks scientific con-
tent because, as Richard Feynman states, “It is whether or
not the theory gives predictions that agree with experiment.
It is not a question of whether a theory is philosophically de-
lightful, or easy to understand, or perfectly reasonable from
the point of view of common sense” [8]. Lacking inference
in the context of a probability model, clustering is essen-
tially a subjective visualization tool. Jain et al. have written,
“Clustering is a subjective process; the same set of data items
often needs to be partitioned differently for different appli-
cations. This subjectivity makes the process of clustering
difficult” [1]. Subjective appreciations are certainly useful
in the formulation of hypotheses, but these are constitutive
of scientific knowledge only if they are set in a predictive
framework.

The key to a predictive probabilistic theory of cluster-
ing is to recognize that, whereas the theory of classification
is based on operators on random variables, the theory of
clustering must be based on operators on random sets. The
predictive capability of a clustering algorithm must be mea-
sured by the decisions it yields regarding the partitioning
of random point sets. Once this is recognized, the path to
the development of a predictive theory of clustering that can
constitute scientific knowledge is clear and such a theory has
been developed [9]. In particular, the error of a clustering al-
gorithm is rigorously grounded within the random-set-based
theory.

Historically, a host of “validity” measures have been pro-
posed for evaluating clustering results based on a single re-
alization of the random-point-set process [10–15]. No doubt
one would like to measure the accuracy of a cluster op-
erator based on a single application. But is this feasible?
Clearly, it would be absurd to claim that one can assess the
validity of a classifier based on the classification of a single
point without knowledge of the true label of the point. In-
deed, how would one hope to assess classifier validity given
its actions on many points without access to their labels?
Assessing the validity of a cluster operator on a single point
set without knowledge of the true partition is analogous to
assessing the validity of a classifier with a single unlabeled
point. But there is a difference that provides hope. The out-
put of a cluster operator consists of a partition of a point set.
Therefore there is spatial structure to the output and one can
define measures for different aspects of this structure, for
instance, compactness. One can also consider the effects of
a cluster operator on subsets of the data. It could be hoped
that such measures can be used to assess the scientific va-
lidity of a clustering algorithm. For a validity measure to as-
sess scientific validity, ipso facto, it must be closely related
to the error rate of the cluster operator as that rate is defined
within a probabilistic theory of clustering. In this paper we
examine a number of proposed validity measures and see

how well they correlate with error rates across a number of
clustering algorithms and random-point-set models.

Validity measures proposed for clustering algorithms fall
broadly into three classes. The first type is based on cal-
culating properties of the resulting clusters, such as com-
pactness, separation and roundness. This approach is called
internal validation because it does not require additional in-
formation about the data [13,14,16]. A second approach is
based on comparisons of partitions generated by the same
algorithm with different parameters, or different subsets of
the data. This is called relative validation, and also does not
include additional information [13,4,17]. In the third way,
called external validation and also based on comparison of
partitions, the partitions to be compared consist of the one
generated by the clustering algorithm and a given partition
of the data (or a subset of the data) [14,18]. External val-
idation corresponds to a kind of error measurement, either
directly or indirectly. Therefore we should expect external
methods to be better correlated to the true error; however,
this is not always the case because it depends on the exter-
nal validation procedure as well as the random labeled point
process to which it is being applied and the specific clus-
tering algorithm being tested. Fig. 1 shows a hierarchy of
validation techniques.

On the issue of models, we have chosen several for this
study. No doubt one could choose others. We have tried to
choose models that would illustrate geometries that are both
favorable and unfavorable to the various validity measures,
thereby helping to provide conditions under which one might
consider applying a particular validity index. If a validity in-
dex has been defined with the idea of measuring some prop-
erty of the resulting clusters, then it might be expected to
perform well when the random labeled point process gen-
erates sets possessing the property. But what happens when
the process does not generate point sets possessing the prop-
erty, or points sets having some degree of relation to the
property? Does the validity measure still provide useful in-
formation or does it collapse completely and provide totally
unreliable results? Obviously, every proposed validity index
has a rationale behind it. But here we return to the episte-
mological question: Under what conditions is the rationale
sound? This question can only be answered by experimen-
tally examining the performance of a validity index under
varied conditions: different clustering algorithms and differ-
ent models.

The paper is organized in the following manner. Section 2
defines the error measure for cluster operators. Sections 3–5
define the internal, relative and external validation indices
that we consider. Section 6 describes the clustering algo-
rithms used in the study. Section 7 describes the model-
based analysis employed. Section 8 describes the experi-
ments. Section 9 analyzes the results relative to the different
validation indices. Some concluding remarks are provided
in Section 10. Owing to the size of the study, a substantial
portion of the results are provided on a companion website
at http://ee.tamu.edu/∼edward/validation/.

http://ee.tamu.edu/~edward/validation/
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Fig. 1. A simplified classification of validation techniques.

2. Error measure

Although we will not cover the mathematical theory of
Ref. [9], we believe it is necessary to summarize some points
so that clustering error and error estimation are clear. As
noted previously, in a probabilistic framework a clustering
algorithm is an operator on random point sets. The points
to be clustered are assumed to belong to a realization S of a
random labeled point process � and a clustering algorithm
is a mapping � that assigns to S a label function, the latter
being of the form �(x) ∈ {0, 1, 2, . . . , K − 1} for all x ∈ S,
where K is the number of clusters forming a partition of S.
This means that x1 and x2 are in the same cluster if and
only if �(x1) = �(x2). The error of a clustering algorithm
is the expected difference between its labels and the labels
generated by the labeled point process �.

To quantify the matter, let S� denote the labeling of S
created by the clustering algorithm �, and let S� denote the
labeling of the point process �. Let I�(S; x) and I�(S; x)

denote the label of x for S� and S�, respectively. Then
the label error between the two labelings is defined as the
proportion of points that are differently labeled:

�(S�, S�) = |{x : I�(S; x) �= I�(S; x)}|
|S| , (1)

where | • | indicates the number of elements of a set. Since
the disagreement between two partitions should not depend
on the indices used to label their clusters, the partition error
is defined by

�∗(S�, S�) = min
�

(S�, �S�), (2)

where the minimum is taken over all of the possible permu-
tations, �S�, of the K sets in S�. Since this error is for a spe-
cific realization S of the process �, the error of the clustering

algorithm � with respect to � is given by the expected value

��(�) = E[�∗(S�, S�)], (3)

where the expectation is taken relative to the distribution
of the random set � (and here we defer to Ref. [9] for the
theoretical details).

Error estimation is done in the usual manner: the expec-
tation E[�∗(S�, S�)] is estimated by generating realiza-
tions S of �, computing �∗(S�, S�) for each realization,
and then averaging. In practice, we can generate indepen-
dent synthetic data to test the performance of a cluster
operator in the following manner: generate a sample
of point sets S1, S2, . . . , Sm according to � (so that
S�

1 , S�
2 , . . . , S�

m are known), apply the clustering algo-
rithm to S1, S2, . . . , Sm to obtain S�

1 , S�
2 , . . . , S�

m , compute
�∗(S�

j , S�
j ) for j =1, 2, . . . , m, and then average �∗(S�

j , S�
j )

for j = 1, 2, . . . , m to obtain an estimate of ��(�) [18].
To illustrate error estimation we consider two simple two-

dimensional labeled point processes. The first one consists
of a mixture of two Gaussian distributions, so that points are
labeled 0 or 1, depending on whether they are generated by
the Gaussian with mean (0, 3) and covariance matrix 2I, or
by the Gaussian with mean (3, 0) and covariance matrix 2I,
with 50 points per class being generated. The second pro-
cess consists of a mixture of a Gaussian with mean (0, 0)

and covariance matrix 0.2I, and a circular distribution with
radius normally distributed according to N(3, 0.2) and angle
normally distributed in radians according to N(0, 1), again
50 points being generated per class. Fig. 2 shows the results
of single realization of the second process, part (a) show-
ing the point set generated by the process and the remain-
ing parts showing the results for five clustering algorithms.
Table 1 shows the estimated error rates for the five cluster-
ing algorithms for the two random labeled point processes
(based on 100 realizations).
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Fig. 2. (a) Labeled random set from second process; (b) K-means clustering (24 errors); (c) fuzzy C-means clustering (21 errors); (d) hierarchical (eu-co)
clustering (18 errors); (e) hierarchical (eu-si) clustering (49 errors); (f) hierarchical (eu-av) clustering (42 errors). Abbreviations in hierarchical clustering:
eu — Euclidean distance; si — Single linkage; co — Complete linkage; av — Average linkage.

Table 1
Estimated misclassification rate (%), over 100 realizations

K-means Fuzzy Hierarchical

C-means eu-co eu-si eu-av

Set 1 7.03 6.92 13.24 48.81 18.76
Set 2 18.9 13.97 26.59 46.14 40.75

3. Internal validation indices

For internal validation, the evaluation of the resulting clus-
ters is based on the clusters themselves, without additional
information or repeats of the clustering process. This family
of techniques is based on the assumption that the algorithms
should search for clusters whose members are close to each
other and far from members of other clusters. We describe
the internal validation indices used in the paper.

3.1. Dunn’s indices

The Dunn’s validation index is defined as the ratio be-
tween the minimum distance between two clusters and the
size of the largest cluster [19–21]. If C = {C1, . . . , CK} is
a partition of the n points into K clusters, then the index is

defined by

V (C) = minh,k=1,...,K,h�=k dC(Ck, Ch)

maxk=1,...,K �(Ck)
, (4)

where dC(Ck, Ch) is the distance between the two clusters
and �(Ck) is the size of the cluster Ck . The value of V (C)

depends on the selection of the distance measures. Several
measures for the distances between clusters (or linkage) are
proposed in Ref. [21]: single, complete, average, average
to centroid and Haussdorff metrics. Table 2 shows the def-
inition for each of these distance measures. The size of the
cluster may be defined in many ways. Some of the measures
defined in Ref. [21] are complete, average and centroid.
Table 3 shows the definition for each of these measures. Each
combination of distance measure and cluster-size measure
defines a different Dunn’s index.

3.2. Silhouette index

The silhouette is the average, over all clusters, of the sil-
houette width of their points [12,20,21]. If x is a point in the
cluster Ck and nk is the number of points in Ck , then the
silhouette width of x is defined by the ratio

S(x) = b(x) − a(x)

max[b(x), a(x)] , (5)
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Table 2
Linkage methods for the distance between two clusters

Linkage Equation Alias

Single dC(Ci, Cj ) = min
x∈Ci ,y∈Cj

d(x, y) min

Complete dC(Ci, Cj ) = max
x∈Ci ,y∈Cj

d(x, y) max

Averagea dC(Ci, Cj ) = 1

ninj

∑
x∈Ci ,y∈Cj

d(x, y) mean

Centroidb dC(Ci, Cj ) = d(x, y) cen

Average to Centroidb dC(Ci, Cj ) = 1

ni + nj

[ ∑
x∈Ci

d(x, y) + ∑
y∈Cj

d(y, x)

]
cmean

Hausdorff metricsc dC(Ci, Cj ) = max[dH (Ci, Cj ), dH (Cj , Ci)] hausf

ani and nj are the number of samples in clusters Ci and Cj , respectively.
bx and y are the centroid of clusters Ci and Cj , respectively.
cdH (A, B) = maxx∈A miny∈B d(x, y).

Table 3
Measures of cluster size

Measure Equation Alias

Complete �(C) = max
x,y∈C

d(x, y) max

Averagea 1

n ∗ (n − 1)

∑
x,y∈C

d(x, y) mean

Centroidb �(C) = 2

|C|
∑

x∈C

d(x, x) cen

an is the number of samples in clusters C.
bx is the centroid of clusters C.

where a(x) is the average distance between x and all other
points in Ck ,

a(x) = 1

nk − 1

∑
y∈Ck,y �=x

d(x, y) (6)

and b(x) is the minimum of the average distances between
x and the points in the other clusters,

b(x) = min
h=1,...,K,h�=k

⎡
⎣ 1

nh

∑
y∈Ch

d(x, y)

⎤
⎦ . (7)

Finally, the global silhouette index is defined by

S = 1

K

K∑
k=1

⎡
⎣ 1

nk

∑
x∈Ck

S(x)

⎤
⎦ . (8)

For a given point x, its silhouette width ranges from −1 to
1. If the value is close to −1, then it means that the point is
closer, on average, to another cluster than the one to which
it belongs. If the value is close to 1, then it means that its
average distance to its own cluster is significantly smaller
than to any other cluster. The higher the silhouette, the more
compact and separated are the clusters.

3.3. Hubert’s correlation with distance matrix

Let C={C1, . . . , CK} be a partition of the set of n objects
into K groups, and let P be a similarity matrix between the n
objects such that P(i, j) is a measure of similarity between
xi and xj . The relationship between two vectors, whether
they belong to the same cluster or not, can be represented
by a similarity matrix D defined by D(i, j) = 1 if xi and xj

belong to the same cluster, and D(i, j)=0 if they belong to
different clusters. The correlation �D between both matrices
gives a measure of similarity between them:

�D = 1

M

n−1∑
i=1

n∑
j=i+1

D(i, j)P (i, j), (9)

with M = n(n − 1)/2, the number of pairs of different
points.

The index �D is classified as an internal index because
it is based only on the partition C defined by the cluster-
ing algorithm and the similarity between the points to be
grouped.

4. Relative validation indices

Relative validation is based on the measurement of the
consistency of the algorithms, comparing the clusters ob-
tained by the same algorithm under different conditions.

4.1. Figure of merit

The figure of merit (FOM) [17] is based on the assumption
that, when used on microarray data, the clusters represent
different biological groups, and therefore, points (genes) in
the same cluster will possess similar pattern vectors (ex-
pression profiles) for additional features (arrays). Let m be
the number of features, n the number of points and K the
number of clusters. Let Cj = {Cj

1 , . . . , C
j
K} be the partition
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obtained by the algorithm when removing the feature Sj .
The figure of merit for the feature Sj is computed as

FOM(K, j) =
√√√√√1

n

K∑
k=1

∑
i∈C

j
k

(xij − xk
j )

2, (10)

where xk
j is the jth element of the average of the vectors in

C
j
k (Fig. 3). The figure of merit for a clustering algorithm,

specifying K clusters, is computed as the following sum:

FOM(K) =
m∑

j=1

FOM(K, j). (11)

If the partition defines compact sets in the removed fea-
ture, then their average distances to their centroids should
be small. The FOM is the average measure of the compact-
ness of these sets. The heuristic behind the figure of merit is
that the lower the FOM, the better the clusters are to predict
the removed feature and, therefore, the more consistent the
result of the clustering algorithm.

A drawback of the FOM as defined is that its decrease as
a function of the number of clusters may be artificial, due
to the fact that more clusters means a smaller average size
for the clusters. A solution to this problem is to adjust the
values using a model-based correction factor,

√
(n − K)/n.

The result is called adjusted figure of merit,

FOMc(K) = 1√
(n − K)/n

· FOM(K). (12)

4.2. Stability

The stability measure has been introduced to assess the
validity of the partitioning found by clustering algorithms
and to select the number of clusters [22,23]. The stability
measures the ability of a clustered data set to predict the clus-
tering of another data set sampled from the same source. Let
us assume that there exists a partition of a set S of n objects
into K groups, C={C1, . . . , CK}, and a partition of another
set S′ of n′ objects into K ′ groups, C′ = {C′

1, . . . , C
′
K ′ }. Let

the labelings � and �′ be defined by �(x) = i if x ∈ Ci , for
x ∈ S, and �′(x) = i if x ∈ C′

i , for x ∈ S′, respectively.
The labeled set (S, �) can be used to train a classifier f :
Rn → L, which induces a labeling � on S′ by �(x) = f (x).
The consistency of the pairs (S, �) and (S′, �′) is measured

by the similarity between the original labeling �′ and the
induced labeling � in S′:

dS(C,C′) = min
�

d�(�
′, �(�)) (13)

over all possible permutations � of the K ′ labels for C′, with

d�(�
1, �2) = 1

n′
∑
x∈S′

	(�1(x), �2(x)) (14)

with 	(u, v) = 0 if u = v and 	(u, v) = 1 if u �= v.
The stability for a clustering algorithm is defined by the

expectation E of the stability for pairs of sets drawn from
the same source:


 = E(S,C)(S′,C′)[d(C,C′)]. (15)

In practice, there is only one set S of points with which to
estimate the stability of a clustering algorithm. Estimation
of the stability is obtained via a resampling schema [22]: the
set S is partitioned into two disjoint subsets S1 and S2, the
clustering algorithm is applied to obtain two partitions, C1
and C2, d(C1,C2) is computed, and the process is repeated
and the values averaged to obtain an estimate of 
.

The stability index is dependent on the number of clus-
ters, and therefore needs to be normalized when used for
model selection [22,23]. The normalization is obtained by
dividing it by the stability obtained when using a random es-
timator as classifier. The selection of the classification rule
can influence the ability of this index to evaluate the quality
of the clustering algorithm, since if the rule is too simple as
to partition the space in the same fashion that the clustering
algorithm does, then it may introduce false instability and
downgrade the algorithm [23].

5. External validation indices

In external validation, the quality of the algorithm is eval-
uated by comparing the resulting clusters with pre-specified
information.

5.1. Hubert’s correlation

Assume that there exist two partitions of the same set of
n objects into K groups: CA = {CA

1 , . . . , CA
K}, defined by

additional information about the problem (called the true
partition), and CB ={CB

1 , . . . , CB
K}, obtained by application

of a clustering algorithm (called the clustering partition).
The sets CA

k are called classes and the sets CB
k are called

clusters. For each partition C the relationship between two
vectors, whether they belong to the same cluster or not, can
be represented by a similarity matrix defined by d(i, j) = 1
if xi and xj belong to the same cluster, and d(i, j) = 0 if
they belong to different clusters.

If dA and dB are the similarity matrices induced by two
partitions, CA and CB , then two similarity indices are com-
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Table 4
Indices of agreement between partitions

Index Equation

Rand statistic R = a + d

M

Jaccard coefficient J = a

a + b + c

Folkes and Mallow index FM =
√

a

a + b

a

a + c

puted as functions of the correlations and the covariances of
these matrices, the Hubert � statistic:

� = 1

M

n−1∑
i=1

n∑
j=i+1

dA(i, j)dB(i, j) (16)

and the normalized �∗ statistic:

�∗ = 1

M�A�B

n−1∑
i=1

n∑
j=i+1

(dA(i, j) − �A)

× (dB(i, j) − �B), (17)

where M = n(n − 1)/2 is the number of pairs of different
points, and �A, �B , �A and �B are the respective sample
means and standard deviations of the values in the matrices
dA and dB . The Hubert statistic is based on the fact that
the more similar the partitions, the more similar the matri-
ces would be, and this similarity can be measured by their
correlation.

5.2. Rand statistics, Jaccard coefficient and Folkes and
Mallows index

Given the true partition CA ={CA
1 , . . . , CA

K} and the clus-
tering partition CB = {CB

1 , . . . , CB
K}, for each pair of sam-

ples x, y (x �= y), there are four possible situations:

(a) x and y fall in the same cluster in both CA and CB ,
(b) x and y fall in the same cluster in CA but in different

clusters in CB ,
(c) x and y fall in the different clusters in CA but in the

same cluster in CB ,
(d) x and y fall in different clusters in both CA and CB .

The measure of disagreement between CA and CB is quan-
tified by the number of pairs of vectors that fall in situations
(b) and (c). Let a, b, c, and d be the numbers of pairs of
different vectors that belong to situations (a), (b), (c) and
(d), respectively, and let M = n(n − 1)/2 be the number of
pairs of different vectors. The indices in Table 4 measure
the agreement between the two partitions [13]: the Rand
statistic, Jaccard coefficient and Folkes and Mallow index.
The Rand statistic measures the proportion of pairs of vec-
tors that agree by belonging either to the same cluster (a)
or to different clusters (d) in both partitions. The Jaccard

coefficient measures the proportion of pairs that belong to
the same cluster (a) in both partitions, relative to all pairs
that belong to the same cluster in at least one of the two
partitions (a + b + c). The Folkes and Mallow (FM) index
measures the geometric mean of the proportion of pairs that
belong to the same cluster in both partitions (a), relative to
the pairs that belong to the same cluster for each partition
(a + b for CA and a + c for CB ).

6. Clustering algorithms

To simulate realistic conditions for the performance of the
validation indices, they are applied to the outcomes of sev-
eral clustering algorithms. We have selected five different al-
gorithms. Variations in parameters raise the amount to a total
of 12 different methods. The clustering algorithms used are:

• K-means: One of the most common iterative algorithms
is the K-means algorithm [1,16], broadly used because of
its simplicity of implementation, its convergence speed
and the good quality of the clusters (for a limited family
of problems).

• Fuzzy C-means: In the K-means algorithm, each vector
is classified as belonging to a unique cluster (hard clus-
ter), and the centroids are updated based on the classified
samples. In a variation of this approach, known as fuzzy
C-means [1,16], all vectors have a degree of membership
of belonging to each cluster, and the respective centroids
are calculated based on these membership degrees.

• SOM: By applying a self-organizing map to the data, clus-
ters can be defined by the points of a grid that is ad-
justed to the data [24–27]. Usually the algorithm uses a
two-dimensional grid in the higher-dimensional space, but
for clustering it is usual to use a one-dimensional grid.
For this paper we implement the SOM algorithm with
Euclidean distance and two types of neighbors: bubble
and Gaussian.

• Hierarchical clustering: Hierarchical clustering [1] cre-
ates a hierarchical tree of similarities between the vectors,
called a dendrogram. The most common implementation
of this strategy is agglomerative hierarchical clustering,
which starts with a family of clusters with one vector
each, and merges the clusters iteratively based on some
distance measure until there is only one cluster left, con-
taining all the vectors. For this paper we consider two
distance metrics: Euclidean distance and correlation, and
three linkage methods:
◦ Single linkage. When two clusters are joined into a new

cluster Ci , the distance between Ci and an existing clus-
ter Cj is the minimum distance between the elements
of Ci and Cj .

◦ Complete linkage. When two clusters are joined into a
new cluster Ci , the distance between Ci and an exist-
ing cluster Cj is the maximum distance between the
elements of Ci and Cj .
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Table 5
Clustering algorithms

Code Algorithm Parameters

km K-means
fcm Fuzzy C-means b = 2a,b

so[eu,b] SOM Distance = Euclidean, Neighborhood = bubbleb,c

hi[eu,co] Hierarchical Distance = Euclidean, Linkage = Complete
hi[c,co] Hierarchical Distance = 1-abs(Pearson Corr), Linkage = Complete
hi[eu,si] Hierarchical Distance = Euclidean, Linkage = Single
hi[c,si] Hierarchical Distance = 1-abs(Pearson Corr), Linkage = Single
em[diag] EM Mixing Model = Diagonala,b

aTolerance = 0.001.
bMaximum number of iterations = 10000.
cStarting � = 0.9, Stopping � = 0.01.

◦ Average linkage. When two clusters are joined into a
new group Ci , the distance between Ci and an existing
cluster Cj is the average distance between the elements
of Ci and Cj .

• Expectation maximization: Expectation maximization
(EM) clustering [28–30] is based on the estimation of
the density for the classes using the EM algorithm.
The estimation is done in a two-step process similar to
K-means clustering. In the first step the probabilities are
estimated conditioned to the actual parameters, assigning
each vector to one cluster (model), while in the second
step the parameters of the models are estimated within
the new clusters. The process is iterated until there is
no more significant change in the parameters. The re-
sult is an estimated set of K multivariate distributions,
each one defining a cluster, and each vector assigned
to the cluster with maximum conditional probability.
Different assumptions on the model result in different
constraints on the covariance matrices. For this paper we
use two constraints for the covariance matrix 
k of the
class k:
◦ Pooled diagonal. 
k =�Id (where Id is the identity ma-

trix). The covariance matrices are all identical, diago-
nal, with the same value in the diagonal. The Gaussians
are spherical.

◦ Diagonal. 
k = �kId . The covariance matrices are all
diagonal with the same value in the diagonal, but they
can be different. The Gaussians are spherical, but they
may have different volumes.

Table 5 presents a list of the clustering algorithms used in the
paper. A more complete list is used for the companion web
page. Hierarchical clustering is used four times, combining
the two distance metrics and two linkage methods, com-
plete and single. SOM is used once, for Euclidean distance
and bubble-type neighbor. Finally, EM clustering is used
also once, for diagonal covariance matrices. The purpose of
using several algorithms is to have a broad spectrum of par-
titions of the data, all of them reflecting some structure of
the data, and to evaluate the validation indices over the full
spectrum.

Table 6
Example of computation of error rate and validation indices for 10 real-
izations of the random process

Error Dunn[mean,cen] Silhouette FOM Rand

17.20 0.430 0.420 1.076 0.714
13.40 0.444 0.465 1.037 0.767
14.00 0.430 0.437 1.073 0.759
14.60 0.437 0.450 1.092 0.750
12.20 0.459 0.472 1.000 0.785
14.40 0.433 0.449 1.037 0.753
13.00 0.459 0.445 1.058 0.773
11.60 0.413 0.449 1.046 0.795
13.60 0.460 0.442 1.036 0.765
12.80 0.414 0.458 1.014 0.776

7. Model-based analysis

Our method is a simulation-based study presenting sev-
eral clustering algorithms against different labeled point pro-
cesses to study how the validation measures correlate with
the error of the algorithm as a label operator on random la-
beled point processes. The simulation is based on models of
labeled point processes, with different separations between
the different classes (label values) that make the clustering
problem more or less complicated, and can easily be con-
trolled by a variance parameter.

The misclassification error is an estimator of the true error
of the cluster operators [9]. Each clustering algorithm can
be considered as a heuristically defined cluster operator (not
learned). The purpose of the paper is to study the relationship
between validation indices and the cluster-operator errors.
To visualize this relationship we plot the indices against
the errors. To quantify the degree of similarity between the
validation indices and the misclassification errors, we use
Kendall’s rank correlation between their values, based on
the recognition that usually the indices are used to compare
the performance of algorithms.

As an example, Table 6 shows the misclassification er-
ror and some validation indices computed over 10 realiza-
tions of the second random process introduced in Section 2,
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Fig. 4. Scatter plots against misclassification rate for (a) Dunn[mean,cen] index; (b) silhouette index; (c) FOM index; (d) Rand index.

with 250 samples for set, when the clusters are computed
with the fuzzy C-means clustering algorithm. Based on 1000
pairs of values (error, validation), the computed rank corre-
lations for this example are corr(Dunn[mean, cen]) = 0.03,
corr(Silhouette) = 0.36, corr(FOM) = 0.45, corr(Rand) =
1.00. Fig. 4 shows the scatter plot over the 1000 realizations.

The overall procedure consists in simulating data, apply-
ing clustering, computing the indices, and comparing them
to the error. The procedure can be characterized in six steps:

(1) Specification of labeled point processes: This stage
requires determining some labeled point process with
sufficient variability to obtain a broad range of error
values, and also avoiding overly simple models that
may be beneficial for some specific measures. We have
approached this goal by allowing the processes to have
a variance multiplier, ranging from very low variability
in the data (allowing good performance of the cluster-
ing algorithms) to high variability, increasing the error
by confusing the algorithms.

(2) Generation of samples from the processes: This step in-
volves generating 100 sample sets (sets with their labels)
for each process.

(3) Application of clustering algorithms to the data: This
step involves computing the cluster labels for each data
set using the clustering algorithms.

(4) Estimation of the error of several algorithms from these
samples: The error is computed between the class labels,
defined in step 2, against the cluster labels, defined in
step 3, via Eq. (2).

(5) Computation of the several validation measures for these
algorithms on the same samples: This step is done in a
different way for relative indices than for internal and
external ones.
(a) Internal indices are computed based on the data

points (spatial distribution of the points) and the
cluster labels obtained in step 3.

(b) External indices are computed based on the class
labels, defined in step 2, and the cluster labels ob-
tained in step 3.

(c) Relative indices are computed based solely on
the data points, applying repeatedly the clustering
algorithms on subsets of the data, and comput-
ing the respective measures on the hold-out data.
This is computationally the heaviest part of the
process, because of the need to run the algorithm
many times to compute a unique index (for exam-
ple, for FOM and a 10-dimensional problem, the
clustering algorithm needs to be run 10 times).

(6) Quantification of the quality of the indices: The measure
of the ability of the validation indices to indicate the
best clustering is determined by its rank correlation with
the misclassification error, computed on all the samples
based on the same labeled point process.

The analysis of the relationship between validation mea-
sures and misclassification, across several models, for
different algorithms (label operators) and validation mea-
sures, displays the strengths and weaknesses of these
measures.
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Fig. 5. Some examples of labeled sets generated for each model. The figures for models 4 and 6 show three-dimensional PCA plots.

8. Experiments

In this study, we generate sample point sets for three dif-
ferent models for the labeled point processes:

(1) Model 1—Two-dimensional mixture of two Gaussian
distributions (Fig. 5).

(2) Model 2—Ten-dimensional mixture of two Gaussian
distributions.

(3) Model 3—Two-dimensional mixture of two distribu-
tions where one distribution is Gaussian with covariance
matrix �2Id and the other is circular with normal distri-
butions for both the radius and the angle, with variances
�2 and 1 (Fig. 5).

(4) Model 4—Ten-dimensional mixture of a Gaussian
and a distribution that is circular in its first two di-
mensions and Gaussian in its other eight dimen-
sions.
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Fig. 6. Plot of misclassification as function of the variance of the model for several clustering algorithms.

(5) Model 5—Two-dimensional mixture of four Gaussian
distributions.

(6) Model 6—Ten-dimensional mixture of a Gaussian and
a distribution that is circular in its first two dimensions
and Gaussian in its other eight dimensions. Class centers
more separated than for model 4.

To obtain different error values, we use �2 = 1, 5, 9, 13 and
17. Fig. 5 shows examples of the six models, for �2 = 5,

using three-dimensional PCA plot for models 4 and 6 [16].
Fig. 6 shows the misclassification error (in %) as a function
of �2 for all the clustering algorithms analyzed.

Tables 5 and 7 present a list of the clustering algorithms
and validation indices, respectively, used in the paper, along
with unique IDs and short descriptions for using the figures
and tables. Tables 8–13 show the rank correlations between
the validation indices and the errors that have resulted from
the experiments.
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Table 7
Validation indices

Code Algorithm Parameters

j1 Trace criterion (Je)

j2 Determinant criterion (Jd )

j3 Invariant criterion (Jf )

dunn[cmean,max] Dunn’s validity index Inter:meantocen–Intra:max
dunn[cmean,mean] Dunn’s validity index Inter:meantocen–Intra:mean
dunn[cmean,cen] Dunn’s validity index Inter:meantocen–Intra:cen
hubbd[eu] �D correlation Distance = Euclidean
silh[eu] Silhouette index Distance = Euclidean
yfom Figure of merit
cfom Corrected figure of merit
stab[10,nn,LDA] Stability Rule = LDAa

stab[10,nn,PERC] Stability Rule = perceptrona

stab[10,nn,CEN] Stability Rule = centroida

stab[10,nn,KNN,3] Stability Rule = 3NNa

hubert � correlation
nhubert Normalized �∗ correlation
rand Rand statistic
jacc Jaccard coefficient
fm Folkes and Mallows index

aRepetitions = 10, normalization = No.

Table 8
Kendall’s correlation for model 1

Index km fcm so[eu,b] hi[eu,co] hi[c,co] hi[eu,si] hi[c,si] em[diag] Av.

j1 0.81 0.81 0.81 0.8 0.62 0.51 0.27 0.79 0.68
j2 0.8 0.8 0.79 0.8 0.57 0.5 0.15 0.78 0.65
j3 0.79 0.8 0.79 0.72 0.49 0.59 0.16 0.71 0.63
dunn[cmean,max] 0.77 0.77 0.77 0.76 0.57 0.69 0.35 0.77 0.68
dunn[cmean,mean] 0.8 0.8 0.8 0.81 0.7 0.7 0.47 0.8 0.74
dunn[cmean,cen] 0.8 0.8 0.8 0.81 0.79 0.71 0.54 0.8 0.76
hubbd[eu] 0.74 0.75 0.74 0.28 0.18 0.69 0.61 0.61 0.57
silh[eu] 0.81 0.81 0.81 0.83 0.75 0.58 0.65 0.81 0.76
yfom 0.77 0.77 0.77 0.71 0.45 0.56 0.27 0.77 0.63
cfom 0.77 0.77 0.77 0.71 0.45 0.56 0.27 0.77 0.63
stab[10,nn,lda] 0.81 0.81 0.8 0.76 0.42 0.48 0.09 0.83 0.63
stab[10,nn,perc] 0.73 0.72 0.72 0.72 0.4 0.36 0.2 0.75 0.57
stab[10,nn,cen] 0.81 0.81 0.8 0.76 0.42 0.51 0.09 0.83 0.63
stab[10,nn,knn,3] 0.8 0.8 0.8 0.76 0.37 0.37 0.13 0.82 0.61
hubert 0.99 0.99 0.99 0.84 0.42 0.59 0.68 0.93 0.8
nhubert 1 1 1 1 0.98 1 0.97 1 0.99
rand 1 1 1 1 1 1 1 1 1
jacc 1 1 1 0.96 0.76 0.63 0.18 0.99 0.82
fm 1 1 1 0.95 0.73 0.63 0.34 0.98 0.83

9. Analysis

9.1. Internal validation

Six internal validation indices have been analyzed: trace
criterion Je [16], determinant criterion Jd [16], invari-
ant criterion Jf [16], Dunn’s index, �D correlation with
Euclidean distance matrix and silhouette index. The 18
variants of Dunn’s index correspond to all possible com-
binations of linkages and cluster size measures, and are
presented in the companion web page.

9.1.1. Trace criterion, determinant criterion and invariant
criterion

For the two-dimensional mixture of Gaussians, these cri-
teria (j1, j2 and j3, respectively) can exhibit good behavior,
their rank correlation with the error reaching values around
0.8 when used on clustering algorithms that tend to generate
compact clusters. For other models or clustering algorithms,
the rank correlation values are notably lower, specially for
the situation where there is a circular distribution (model 3).
The average correlation lies below 0.7 for all models, and
below 0.5 for models 2–4, indicating very low information
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Table 9
Kendall’s correlation for model 2

Index km fcm so[eu,b] hi[eu,co] hi[c,co] hi[eu,si] hi[c,si] em[diag] Av.

j1 0.65 0.66 0.65 0.47 0.44 0.55 0.14 0.45 0.5
j2 0.35 0.44 0.36 0.28 0.37 0.57 0.14 0.2 0.34
j3 0.33 0.43 0.34 0.36 0.39 0.57 0.14 0.14 0.34
dunn[cmean,max] 0.51 0.5 0.5 0.35 0.36 0.57 0.12 0.4 0.41
dunn[cmean,mean] 0.63 0.63 0.63 0.42 0.46 0.57 0.07 0.42 0.48
dunn[cmean,cen] 0.63 0.63 0.63 0.4 0.46 0.57 0.13 0.42 0.48
hubbd[eu] 0.65 0.68 0.67 0.3 0.38 0.56 0.04 0.41 0.46
silh[eu] 0.65 0.65 0.65 0.33 0.46 0.55 0.01 0.56 0.48
yfom 0.66 0.69 0.68 0.56 0.44 0.55 0.1 0.67 0.54
cfom 0.66 0.69 0.68 0.56 0.44 0.55 0.1 0.67 0.54
stab[10,nn,lda] 0.61 0.65 0.65 0.36 0.37 0.55 0 0.66 0.48
stab[10,nn,perc] 0.58 0.61 0.61 0.49 0.42 0.32 0.08 0.62 0.47
stab[10,nn,cen] 0.62 0.65 0.65 0.39 0.39 0.55 0.07 0.66 0.5
stab[10,nn,knn,3] 0.61 0.65 0.64 0.29 0.34 0.55 0.02 0.65 0.47
hubert 0.86 0.98 0.91 0.27 0.38 0.95 0.38 0.5 0.65
nhubert 0.99 1 0.99 0.91 0.94 1 0.97 0.96 0.97
rand 1 1 1 1 1 1 1 1 1
jacc 0.91 0.99 0.94 0.36 0.44 0.95 0.38 0.66 0.7
fm 0.91 0.99 0.94 0.34 0.44 0.95 0.38 0.65 0.7

Table 10
Kendall’s correlation for model 3

Index km fcm so[eu,b] hi[eu,co] hi[c,co] hi[eu,si] hi[c,si] em[diag] Av.

j1 0.09 0.12 0.1 0.14 0.07 0.66 0.04 0.29 0.19
j2 0.2 0.18 0.2 0.07 0.04 0.65 0.09 0.17 0.2
j3 0.09 0.12 0.08 0.13 0.08 0.65 0.06 0.31 0.19
dunn[cmean,max] 0.52 0.47 0.53 0.32 0.05 0.64 0 0.25 0.35
dunn[cmean,mean] 0.3 0.17 0.31 0.06 0.01 0.52 0.01 0.01 0.17
dunn[cmean,cen] 0.17 0.04 0.18 0.01 0.09 0.56 0.1 0.05 0.15
hubbd[eu] 0.49 0.51 0.5 0.12 0.03 0.72 0.21 0.51 0.39
silh[eu] 0.56 0.39 0.58 0.49 0.1 0.2 0.11 0.29 0.34
yfom 0.62 0.57 0.63 0.55 0.06 0.52 0.02 0.6 0.45
cfom 0.62 0.57 0.63 0.55 0.06 0.52 0.02 0.6 0.45
stab[10,nn,lda] 0.21 0.3 0.24 0.24 0.05 0.35 0.01 0.5 0.24
stab[10,nn,perc] 0.19 0.29 0.21 0.25 0.06 0.5 0.02 0.45 0.25
stab[10,nn,cen] 0.19 0.29 0.22 0.26 0.05 0.35 0.01 0.51 0.24
stab[10,nn,knn,3] 0.21 0.29 0.23 0.31 0.01 0.25 0.04 0.5 0.23
hubert 0.79 0.84 0.8 0.34 0.05 0.15 0.22 0.09 0.41
nhubert 0.99 0.99 0.99 0.96 0.91 1 0.63 0.9 0.92
rand 1 1 1 1 1 1 1 1 1
jacc 0.84 0.89 0.85 0.63 0.12 0.19 0.2 0.05 0.47
fm 0.84 0.89 0.85 0.58 0.12 0.17 0.2 0.02 0.46

represented by the indices. Departure from Gaussian mod-
els or clustering algorithms that do not generate compact
clusters negatively affects the quality of these indices.

9.1.2. Dunn index
On average, for a low-dimensional mixture of Gaussians

(models 2 and 5), the Dunn index (dunn) attains better rank
correlation when used with a linkage based on the cen-
troids, both centroid (dunn[cmean,cen]) and average to cen-
troids (dunn[cmean,mean]), reaching average values above
0.8, and the cluster size measure does not considerably affect
the results. For the other models, this index has a consistent
low correlation to the error.

9.1.3. �D correlation with Euclidean distance matrix
This index (hubbd) has an average correlation between

0.4 and 0.5, except for model 5, with average correlation of
0.66. Its behavior is highly variable, reaching its maximum
value for hierarchical clustering on model 3 (correlation of
0.72) (Table 10).

9.1.4. Silhouette
The silhouette index (silh) is affected by lack of normality

and higher-dimensional space. The correlation is not low for
models 1, 5 and 6, but it drops below 50% for models 2–4.
The reasons for this may reside in the distance-based nature
of the index and the fact that for some models the index
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Table 11
Kendall’s correlation for model 4

Index km fcm so[eu,b] hi[eu,co] hi[c,co] hi[eu,si] hi[c,si] em[diag] Av.

j1 0.61 0.63 0.63 0.43 0.42 0.52 0.12 0.44 0.48
j2 0.34 0.4 0.35 0.24 0.35 0.53 0.12 0.22 0.32
j3 0.33 0.4 0.35 0.33 0.37 0.53 0.12 0.16 0.32
dunn[cmean,max] 0.48 0.48 0.47 0.33 0.38 0.53 0.1 0.39 0.4
dunn[cmean,mean] 0.59 0.58 0.59 0.39 0.43 0.53 0.07 0.4 0.45
dunn[cmean,cen] 0.59 0.58 0.59 0.37 0.43 0.53 0.1 0.4 0.45
hubbd[eu] 0.64 0.68 0.67 0.27 0.35 0.53 0.03 0.44 0.45
silh[eu] 0.62 0.63 0.62 0.3 0.43 0.53 0.02 0.53 0.46
yfom 0.66 0.69 0.68 0.53 0.41 0.53 0.07 0.67 0.53
cfom 0.66 0.69 0.68 0.53 0.41 0.53 0.07 0.67 0.53
stab[10,nn,lda] 0.57 0.62 0.63 0.33 0.37 0.22 0.01 0.64 0.42
stab[10,nn,perc] 0.55 0.59 0.58 0.45 0.4 0.29 0.05 0.6 0.44
stab[10,nn,cen] 0.59 0.64 0.62 0.35 0.37 0.22 0.06 0.64 0.44
stab[10,nn,knn,3] 0.57 0.62 0.61 0.27 0.34 0.23 0.01 0.63 0.41
hubert 0.84 0.97 0.9 0.24 0.38 0.95 0.3 0.51 0.64
nhubert 0.99 1 0.99 0.89 0.94 1 0.97 0.96 0.97
rand 1 1 1 1 1 1 1 1 1
jacc 0.89 0.98 0.94 0.31 0.44 0.95 0.3 0.65 0.68
fm 0.89 0.98 0.94 0.3 0.43 0.95 0.3 0.62 0.68

Table 12
Kendall’s correlation for model 5

Index km fcm so[eu,b] hi[eu,co] hi[c,co] hi[eu,si] hi[c,si] em[diag] Av.

j1 0.69 0.84 0.82 0.85 0.71 0.37 0.27 0.82 0.67
j2 0.63 0.84 0.81 0.86 0.72 0.5 0.2 0.83 0.67
j3 0.69 0.84 0.82 0.85 0.71 0.37 0.27 0.82 0.67
dunn[cmean,max] 0.76 0.78 0.76 0.78 0.6 0.41 0.17 0.78 0.63
dunn[cmean,mean] 0.78 0.8 0.8 0.78 0.55 0.36 0.2 0.8 0.63
dunn[cmean,cen] 0.78 0.8 0.79 0.77 0.5 0.4 0.19 0.8 0.63
hubbd[eu] 0.51 0.78 0.74 0.59 0.58 0.75 0.62 0.72 0.66
silh[eu] 0.7 0.83 0.81 0.84 0.8 0.44 0.73 0.84 0.75
yfom 0.55 0.79 0.76 0.77 0.67 0.59 0.27 0.79 0.65
cfom 0.55 0.79 0.76 0.77 0.67 0.59 0.27 0.79 0.65
stab[10,nn,cen] 0.37 0.83 0.78 0.81 0.62 0.38 0.25 0.85 0.61
hubert 0.81 0.99 0.96 0.87 0.79 0.33 0.24 0.93 0.74
nhubert 0.89 0.99 0.98 0.94 0.87 0.67 0.87 0.99 0.9
rand 0.89 0.99 0.98 0.93 0.86 0.76 0.92 0.98 0.91
jacc 0.88 0.99 0.98 0.94 0.87 0.39 0.46 0.98 0.81
fm 0.88 0.99 0.98 0.93 0.86 0.39 0.28 0.98 0.79

flattens fast as a function of the variance of the model, as is
shown in Fig. 7 for model 4. In this figure we use a three-
dimensional surface view of the scatter plot to appreciate
where the majority of the points lie.

9.2. Relative validation

9.2.1. Figure of merit
The figure of merit (yfom) shows consistent high correla-

tion (above 0.6) for most of the clustering algorithms that
tend to form compact clusters, and for most of the mod-
els, but falls below 0.5 correlation when used for algorithms
based in correlation instead of Euclidean distance (algo-
rithms hi [C,Co] and hi [C,Si]). A key drawback, shared by

other internal and relative indices, is that it relies on the
disposition of the points to be clustered. Therefore it is af-
fected by changes in the variance of the model, even when
the clustering algorithms may yield consistent results. This
is exemplified in Fig. 8(a), where each strip is generated
from a different variance multiplier. The FOM lies in differ-
ent ranges for different variances, while the clustering error
covers a broad range for all of them. In this case the FOM
is unable to accurately predict the quality of the clusters.
The reason is clear when comparing the average values for
FOM against the values for the error rate, as a function of
the variance (Figs. 8(b) and (c), respectively). For FOM, the
index is essentially a function of the variability of the data,
independent of the classifier used or individual samples of
the data.
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Table 13
Kendall’s correlation for model 6

Index km fcm so[eu,b] hi[eu,co] hi[c,co] hi[eu,si] hi[c,si] em[diag] Av.

j1 0.84 0.83 0.83 0.79 0.68 0.55 0.27 0.79 0.7
j2 0.75 0.78 0.75 0.64 0.53 0.57 0.27 0.69 0.62
j3 0.72 0.77 0.72 0.65 0.52 0.57 0.27 0.59 0.6
dunn[cmean,max] 0.75 0.75 0.75 0.71 0.59 0.57 0.15 0.73 0.63
dunn[cmean,mean] 0.83 0.82 0.82 0.76 0.72 0.57 0.13 0.78 0.68
dunn[cmean,cen] 0.82 0.82 0.82 0.76 0.74 0.57 0.21 0.78 0.69
hubbd[eu] 0.77 0.78 0.77 0.38 0.42 0.57 0.12 0.7 0.56
silh[eu] 0.84 0.83 0.83 0.74 0.74 0.56 0.02 0.81 0.67
yfom 0.81 0.81 0.8 0.75 0.58 0.56 0.09 0.8 0.65
cfom 0.81 0.81 0.8 0.75 0.58 0.56 0.09 0.8 0.65
stab[10,nn,lda] 0.84 0.85 0.85 0.74 0.55 0.57 0.04 0.85 0.66
stab[10,nn,perc] 0.75 0.73 0.72 0.69 0.55 0.46 0.09 0.72 0.59
stab[10,nn,cen] 0.84 0.85 0.85 0.75 0.57 0.57 0.08 0.85 0.67
stab[10,nn,knn,3] 0.84 0.84 0.85 0.69 0.53 0.57 0.05 0.84 0.65
hubert 0.99 1 0.99 0.67 0.6 0.96 0.68 0.93 0.85
nhubert 1 1 1 0.99 0.98 1 0.99 1 1
rand 1 1 1 1 1 1 1 1 1
jacc 1 1 1 0.82 0.74 0.96 0.68 0.98 0.9
fm 0.99 1 1 0.8 0.73 0.96 0.68 0.98 0.89
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Fig. 7. Silhouette index as function of the variance and its scatter plot (a,b) for model 4 and (c,d) for model 6.
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Fig. 8. Figure of merit: (a) scatter plots, (b) FOM as function of the variance, (c) misclassification rate as a function of the variance.
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Fig. 9. Scatter plots for (a) normalized �∗ correlation and (b) Rand index.

9.2.2. Stability
The stability indices (stab) show some of the highest cor-

relation values (above 0.8 for models 1 and 6) but very low
ones also (below 0.5 for model 3). The overall behavior is
not significantly better than some internal validation indices,
while the computational cost is extremely larger, involving a
Monte Carlo approach (to partition the data) plus clustering
and training a classifier in each step.

9.3. External validation

The only indices to have an average and combined cor-
relation close to 1 are the Rand index (rand) and the nor-
malized �∗ correlation (nhubert). Figs. 9(a) and (b) show
that even if the relationships are not linear (the average lin-
ear Pearson correlation between them and the indices being
0.98, not shown here), there is a one-to-one relationship be-
tween them and the error.

The same observation does not repeat for the other exter-
nal measures: � and �∗ correlation (hubert, nhubert), the
Jaccard coefficient (jacc) and the Folkes and Mallow index
(fm). Fig. 10 shows that for high values of the error the re-
lationship between the indices and the error is no longer
one-to-one.

10. Conclusion

For simulations or when additional information is known
about the true classes, the choice of validity index is clearly
in favor of external indices; however, not all of them are
good predictors of the clustering error. For external indices,
the Rand statistic is the best replacement for the error rate: it
can be computed quickly, it does not deviate from the error
for the 2-class case, and the deviation is small for models
with more than two classes (an average correlation of 0.9
for model 5). In some cases the other external indices give
information associated with the Rand index, like the corre-
lation between the similarity matrices (hubert and nhubert),
but in other cases they measure different properties of the
relationship between clusters and classes, like the Jaccard
coefficient and Folkes and Mallows indices, and may not
correlate well with clustering error.

In the absence of information to apply external validation,
intuitively it might seem that the relative indices should be
more desirable than the internal indices since they try to ex-
ploit data redundancy; however, most of the results show that
even for simple models the relative indices do not give sub-
stantial improvement over the simpler internal indices, while
at the same time increasing the computational costs beyond
the limits of a desktop PC. In general, internal indices have a
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Fig. 10. Scatter plots for (a) �∗ correlation, (b) Jaccard coefficient and (c) Folkes and Mallow index.

satisfactory behavior when the conditions are appropriately
constrained, such as using Gaussian models with compact
clustering algorithms; however, when the models get more
complex or the algorithms give more complex clusters, the
internal indices fail to correlate well with the error of the
algorithm. In that case, the relative indices also fail to al-
most the same degree. If a choice is to be made, based on
our extensive simulations among varied models, it appears
that the silhouette index should be the choice, since it al-
most always outperforms the other internal indices, and its
performance is close to that of the best relative indices.

What we believe, as has been demonstrated by our exten-
sive analysis, is that, when investigating the performance of
a proposed clustering algorithm, it is best to consider var-
ied models and use the true clustering error. In applications
where one wishes to get an idea of the accuracy of the clus-
tering when there is only a single sample, unless there is
some evidence, either in terms of sufficient data for model
estimation or prior model knowledge, that a validity mea-
sure is well-correlated to the error rate for the algorithm,
one should not refer to a validity score to justify a claim
of clustering accuracy. Indeed, relative to clustering being
scientifically constitutive, the historical evolution of validity
indices might be seen as being premature. Without a predic-
tive theory of clustering, there is no hope of checking the
meaningfulness of a validity index. What is now needed is
a rigorous accounting of the distributional conditions that
warrant the use of an already proposed validity index and
the development of new validity indices that highly corre-
late to the performance of clustering algorithms under well-
documented circumstances.
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