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Mathematical and computational modeling of genetic regulatory
networks promises to uncover the fundamental principles governing
biological systems in an integrative and holistic manner. It also
paves the way toward the development of systematic approaches
for effective therapeutic intervention in disease. The central theme
in this paper is the Boolean formalism as a building block for mod-
eling complex, large-scale, and dynamical networks of genetic in-
teractions. We discuss the goals of modeling genetic networks as
well as the data requirements. The Boolean formalism is justified
from several points of view. We then introduce Boolean networks
and discuss their relationships to nonlinear digital filters. The role
of Boolean networks in understanding cell differentiation and cel-
lular functional states is discussed. The inference of Boolean net-
works from real gene expression data is considered from the view-
points of computational learning theory and nonlinear signal pro-
cessing, touching on computational complexity of learning and ro-
bustness. Then, a discussion of the need to handle uncertainty in a
probabilistic framework is presented, leading to an introduction of
probabilistic Boolean networks and their relationships to Markov
chains. Methods for quantifying the influence of genes on other
genes are presented. The general question of the potential effect of
individual genes on the global dynamical network behavior is con-
sidered using stochastic perturbation analysis. This discussion then
leads into the problem of target identification for therapeutic inter-
vention via the development of several computational tools based
on first-passage times in Markov chains. Examples from biology are
presented throughout the paper.

Keywords—Attractor, best-fit extension, Boolean network, cell
differentiation, coefficient of determination, consistency problem,
gene, genetic network, influence, Markov chain, microarray, non-
linear filter, probabilistic Boolean network, root signal.

I. INTRODUCTION

A central focus of genomic research concerns under-
standing the manner in which cells execute and control the
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enormous number of operations required for normal func-
tion and the ways in which cellular systems fail in disease.
Biological systems function in an exceedingly parallel and
extraordinarily integrated fashion. Feedback and damping
are routine even for the most common of activities. Thus,
in this era of genomic biology, single gene perspectives are
becoming increasingly limited for gaining insight into bio-
logical processes. Global, systemic, or network perspectives
are becoming increasingly important for making progress
in our understanding of the manner in which genes and
molecules collectively form a biological system and for
harnessing this understanding in educated intervention for
correcting human diseases. Such approaches inevitably re-
quire computational and formal methods to process massive
amounts of data, understand general principles governing
the system under study, and make useful predictions about
system behavior in the presence of known conditions.

The development of high-throughput genomic and pro-
teomic technologies is empowering researchers in the
collection of broad-scope gene information. The advent of
cDNA microarrays and oligonucleotide chips [1]–[5], which
facilitate large-scale surveys of gene expression, has incited
much interdisciplinary scientific activity. The diagnostic
potential of gene expression data has already been observed.
For example, cancer classification using a variety of methods
has been used to exploit the class-separating power of expres-
sion data: leukemias [6], various cancers [7], small, round,
blue-cell cancers [8], and hereditary breast cancer [9]. The
next step is to dig deeper and understand the underlying
mechanisms and the functions of genes in health and disease.

One approach is to model the genetic regulatory system
and infer the model structure and parameters from real gene
expression data. There are two main objectives. First, we
aim to discover and understand the underlying gene regula-
tory mechanisms by means of inferring them from data. This
generally falls within the scope of computational learning
theory [10] or system identification [11]. Second, by using
the inferred model, we endeavor to make useful predictions
by mathematical analysis and computer simulations. There

0018-9219/02$17.00 © 2002 IEEE

1778 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 11, NOVEMBER 2002



is a natural order to these two objectives in that the inference
must precede the analysis and simulation. The potential clin-
ical impact is tremendous as this type of model-based anal-
ysis not only can open up a window on the physiology of
an organism and disease progression, but also translate into
accurate diagnosis, target identification, drug development,
and treatment.

An important and fundamental question is: what class of
models should be chosen? The selection of a model class
should be made in view of the data requirements and the
goals of the modeling and analysis. Such a choice involves
classical engineering tradeoffs. For instance, a “fine” model
with many parameters may be able to capture detailed “low-
level” phenomena, such as protein concentrations and ki-
netics of reactions, but will require very large amounts of
data for the inference, lest the model be “overfit” to the data.
At the same time, a “coarse” model with fewer parameters
and lower complexity will succeed in capturing “high-level”
phenomena, such as whether a gene isON or OFF at a given
time, but will require much smaller amounts of data. Such
considerations should drive the selection of the model class.
Needless to say, within a chosen model class, Occam’s Razor
Principle, which underlies all scientific theory building, dic-
tates that the model complexity should never be made higher
than what is necessary to faithfully “explain the data.”

There is a rather wide spectrum of approaches for modeling
generegulatorynetworks,eachwith itsownassumptions,data
requirements, and goals. The gamut runs from linear models,
Bayesian networks, neural networks, nonlinear ordinary dif-
ferentialequations,andstochasticmodels, toBooleanmodels,
logical networks, Petri nets, graph-based models, grammars,
and process algebras. There have been a number of excellent
survey papers on modeling and simulation of genetic regula-
tory networks [12]–[14] as well as a recent book [15].

II. WHY BOOLEAN?

The model system that has received, perhaps, the most
attention, not only from the biology community, but also
in physics, is theBoolean Networkmodel, originally intro-
duced by Kauffman [16]–[19]. Good reviews of this model
can be found in [20]–[22]. In this model, gene expression
is quantized to only two levels:ON and OFF. The expres-
sion level (state) of each gene is functionally related to the
expression states of some other genes, using logical rules.
Computational models that reveal these logical interrelations
have since then been successfully constructed [23]–[26]. Be-
fore we go into the formal definitions of the model, it may
be useful to pause and ask several general, but fundamental,
questions.

1) To what extent do such models represent reality?
2) Do we have the “right” type of data to infer these

models?
3) What do we hope to learn from them?
The first question pertains more to modeling in general.

All models only approximate reality by means of some
formal representation. It is the degree to which we hope
to approximate reality and, more importantly, our goals
of modeling, namely, to acquire knowledge about some

physical phenomenon, that determines what class of models
should be chosen. Viewed in the framework of learning
theory, we are simply selecting an appropriatehypothesis
spaceand then proceed to actually select a hypothesis from
this space by observing data. In the context of Boolean
networks as models of genetic regulatory networks, there is
no doubt that the binary approximation of gene expression is
only, as Huang puts it [21], a “logical caricature.” However,
even though most biological phenomena manifest them-
selves in the continuous domain, we often describe them in
a binary logical language such as “on and off,” “upregulated
and downregulated,” and “responsive and nonresponsive.”
Before embarking on modeling gene regulatory networks
with a Boolean formalism, it is prudent to test whether or
not meaningful biological information can be extracted from
gene expression data entirely in the binary domain. This
question was taken up in [27]. We reasoned that if the genes,
when quantized to only two levels (1 or 0), would not be
informative in separating known subclasses of tumors, then
there would be little hope for Boolean modeling of realistic
genetic networks based on gene expression data. Fortu-
nately, the results were very promising. By using binary
gene expression data, generated via cDNA microarrays,
and the Hamming distance as a similarity metric, we were
able to show a clear separation between different subtypes
of gliomas as well as between different sarcomas, using
multidimensional scaling. This seems to suggest that a good
deal of meaningful biological information, to the extent that
it is contained in the measured continuous-domain gene
expression data, is retained when it is binarized.

This leads to the second question. In the case of cDNA
microarray data, it is widely recognized that reproducibility
of measurements and between-slide variation is a major
issue [28], [29]. Furthermore, genetic regulation exhibits
considerable uncertainty on the biological level. Indeed,
evidence suggests that this type of “noise” is in fact ad-
vantageous in some regulatory mechanisms [30]. Thus,
from a practical standpoint, limited amounts of data and the
noisy nature of the measurements can make useful quanti-
tative inferences problematic and a coarse-scale qualitative
modeling approach seems to be justified. To put it another
way, if our goals of modeling were to capture the genetic
interactions with fine-scale quantitative biochemical details
in a global large-scale fashion, then the data produced by
currently available technology would not be adequate.

Thus, the third question is concerned with what type of
knowledge we hope to acquire with the chosen models and
the available data. As a first step, we may be interested in
discovering qualitative relationships underlying genetic reg-
ulation and control. That is, we wish to emphasize funda-
mental generic coarse-grained properties of large networks
rather than quantitative details, such as kinetic parameters
of individual reactions [21]. Furthermore, we may wish to
gain insight into the dynamical behavior of such networks
and how it relates to underlying biological phenomena, such
as cellular state dynamics, thus providing the potential for
the discovery of novel targets for drugs. Recent research in-
dicates that many realistic biological questions may be an-

SHMULEVICH et al.: FROM BOOLEAN TO PBNs AS MODELS OF GENETIC REGULATORY NETWORKS 1779



Fig. 1. A diagram illustrating the cell cycle regulation example. Arrowed lines represent activation
and lines with bars at the end represent inhibition.

swered within the seemingly simplistic Boolean formalism.
Boolean networks are structurally simple, yet dynamically
complex, and have yielded insights into the overall behavior
of large genetic networks [22], [31]–[33].

Let us give an example borrowed from [34], showing the
logical representation of cell cycle regulation. This process of
cellular growth and division is highly regulated. A disbalance
in this process results in unregulated cell growth in diseases
such as cancer. In order for cells to move from the G1 phase
to the S phase, when the genetic material, DNA, is replicated
for the daughter cells, a series of molecules such as cyclin E
and cyclin-dependent kinase 2 (cdk2) work together to phos-
phorylate the retinoblastoma (Rb) protein and inactivate it,
thus releasing cells into the S phase. Cdk2/cyclin E is regu-
lated by two switches: the positive switch complex called cdk
activating kinase (CAK) and the negative switch p21/WAF1.
The CAK complex can be composed of two gene products:
cyclin H and cdk7. When cyclin H and cdk7 are present, the
complex can activate cdk2/cyclin E. A negative regulator of
cdk2/cyclin E is p21/WAF1, which in turn can be activated
by p53. When p21/WAF1 binds to cdk2/cyclin E, the kinase
complex is turned off [35]. Further, p53 can inhibit cyclin
H, a positive regulator of cyclin E/cdk2 [36]. This negative
regulation is an important defensive system in the cells. For
example, when cells are exposed to mutagen, DNA damage
occurs. It is to the benefit of cells to repair the damage be-
fore DNA replication so that the damaged genetic materials
do not pass onto the next generation. Extensive amount of
work has demonstrated that DNA damage triggers switches
that turn on p53, which then turns on p21/WAF1. p21/WAF1
then inhibits cdk2/cyclin E, thus Rb becomes activated and
DNA synthesis stops. As an extra measure, p53 also inhibits
cyclin H, thus turning off the switch that turns on cdk2/cyclin
E. Such delicate genetic switch networks in the cells are the
basis for cellular homeostasis—the ability of an organism to
maintain equilibrium.

Fig. 2. The logic diagram describing the activity of Rb protein
in terms of 4 inputs: cdk7, cyclin H, cyclin E, and p21. The gate
with inputs cdk7 and cyclin H is anAND gate, the gate with input
p21/WAF1 is aNOT gate, and the gate whose output is Rb is aNAND

(negatedAND) gate.

For the purposes of illustration, let us consider a simplified
diagram, shown in Fig. 1, illustrating the effects of cdk7/cy-
clin H, cdk2/cyclin E, and p21/WAF1 on Rb. Thus, p53 and
other known regulatory factors are not considered. While this
diagram represents the above relationships from a pathway
perspective, we may also wish to represent the activity of Rb
in terms of the other variables in a logic-based fashion. Fig. 2
contains a logic circuit diagram of the activity of Rb (“on” or
“off”) as a Boolean function of four input variables: cdk7, cy-
clin H, cyclin E, and p21/WAF1. Note that cdk2 is shown to
be completely determined by the values of cdk7 and cyclin
H using the AND operation and thus, cdk2 is not an inde-
pendent input variable. Also, in Fig. 1, p21/WAF1 is shown
to have an inhibitive effect on the cdk2/cyclin E complex,
which in turn regulates Rb, while in Fig. 2, we see that from
a logic-based perspective, the value of p21/WAF1 works to-
gether with cdk2 and cyclin E to determine the value of Rb.

The representation containing logical gates in Fig. 2
should be familiar to most electrical engineers who have
studied digital logic design.

III. B OOLEAN NETWORKS

We now describe the structure of Boolean networks
and how their dynamics relate to functional cellular states.
We also show some relationships to invariant signal sets
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or root signals in nonlinear digital filtering. A Boolean
network is defined by a set of nodes (genes)

and a list of Boolean functions
. Each ,

is a binary variable and its value at time is com-
pletely determined by the values of some other genes

at time by means of a Boolean
function . That is, there are genes assigned to
gene and the mapping : ,

determines the “wiring” of gene . Thus,
we can write

(1)

Each represents the state (expression) of gene, where
represents the fact that geneis expressed and

means it is not expressed. The list of Boolean functions
represents the rules of regulatory interactions between genes.
That is, any given gene transforms its inputs (regulatory fac-
tors that bind to it) into an output, which is the state or ex-
pression of the gene itself. Themaximum connectivityof a
Boolean network is defined by . All genes
are assumed to update synchronously in accordance with the
functions assigned to them and this process is then repeated.
The artificial synchrony simplifies computation while pre-
serving the qualitative, generic properties of global network
dynamics [21], [20], [32]. It is clear that the dynamics of the
network are completely determined by (1). Let us give an
example.

Consider a Boolean network consisting of five genes
with the corresponding Boolean functions

given by the truth tables shown in Table 1. The maximum
connectivity is , although we allow some input
variables to duplicate, essentially reducing the connectivity.
For example, consider , which is the truth table of the
well-known majority function. We see that, since
and , , which is a
function of only one (essential) variable.1

The dynamics of this Boolean network are shown in Fig. 3.
Since there are five genes, there are possible states
that the network can be in. Each state is represented by a
circle and the arrows between states show the transitions of
the network according to the functions in Table 1. It is easy to
see that, because of the inherent deterministic directionality
in Boolean networks as well as only a finite number of pos-
sible states, certain states will be revisited infinitely often if,
depending on the initial starting state, the network happens
to transition into them. Such states are calledattractorsand
the states that lead into them comprise theirbasins of attrac-
tion. For example, in Fig. 3, the state (00000) is an attractor
and the seven other (transient) states that eventually lead into
it are its basin of attraction.

The attractors represent thefixed pointsof the dynamical
system that capture its long-term behavior. The attractors are
always cyclical and may consist of more than one state. The
number of transitions needed to return to a given state in

1The majority ofx , x , andx is alwaysx . Other variables are called
fictitious.

Table 1
Truth Tables of the Functions in a Boolean Network With
Five Genes

The indicesj , j , andj indicate the input connections for each of the
functions.

an attractor is called thecycle length. For example, the at-
tractor (00000) has cycle length 1 while the states (11010)
and (11110) comprise an attractor with cycle length 2.

A. Relationship to Nonlinear Digital Filters

The attractors in Boolean networks are very closely re-
lated to so-calledroot signalsof nonlinear digital filters. A
root signal of a given filter is a signal that is invariant to ap-
plications of that filter; i.e., the signal remains unchanged.
Root signals are important for characterizing nonlinear fil-
ters because they represent the “pass-band” characteristics
of a filter, very much like the frequencies that are passed by
a linear filter. Root signals have been studied extensively for
different types of filters, such as median filters, stack filters,
and morphological filters [37]–[42]. A key instance of root
signals occurs in the case of idempotent filters, which play a
central role in mathematical morphology [43], [44].

Consider a binary-valued one-dimensional (1-D) signal of
arbitrary length. Suppose a window of length
is sliding across this signal. At every location of the window,
the contents inside the window are used as input variables to
some fixed Boolean function. That is,

(2)

represents the output of the Boolean function corresponding
to the window centered on theth value of the input signal.
The sequence of outputs can be thought of as an output
signal of the filter. For example, if this Boolean function is
monotone (positive), meaning that it can be written without
complemented variables in its disjunctive normal form, then
the filter defined by such a Boolean function is a stack filter
[38]. It also corresponds to a neural network in which the
weights of all the threshold logic gates are nonnegative. A
special property of such filters, known asthreshold decom-
position[52], allows us to generalize these filters to the real-
valued domain while being able to analyze all their deter-
ministic and statistical properties entirely in the binary do-
main. It is easy to see that for a finite-length signal,2 (2)

2For the case of finite-length signals, various appending strategies can be
used to augment the left- and right-hand sides of the signal so that the output
signal is of the same length as the input signal.
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Fig. 3. The state-transition diagram for the Boolean network defined in Table 1.

is really a special case of (1): each Boolean functionis
the same function ; for all ; and ,

. So, the filter is re-
ally a Boolean network with simple fixed “wiring” defined
by the neighborhood structure (window). Similarly, the en-
tire signal corresponds to a state of a Boolean network and
one filtering pass corresponds to a transition from that state
to the next state. If the filtering process is repeated, the same
cyclical phenomenon will occur. That is, either the signal
will convergeto a root signal after a finite number of fil-
tering passes or periodic behavior will be observed.3 Such a
“sliding window” filtering process corresponds to a cellular
automaton and can easily be extended to two- or higher-di-
mensional signals.

The attractors of a Boolean network represent a type of
memory of the dynamical system. They also represent an ab-
stract model of computation, which transforms a finite con-
figuration (input) into another configuration (output). For ex-
ample, the partitioning of the state space into attractors with
their respective basins of attraction is a form of classification.
Virtually the same idea appears in papers by Yu and Coyle
[46], [47] on the classification and associative memory capa-
bility of stack filters, where the set of root signals represents
the associative memory of the filter. Similar work showed
that cellular automata, which are special cases of Boolean
networks, can process information [48] and are able to per-
form computations, such as density classification [49], [50].
With the pioneering work of John von Neumann, biology was
one of the first disciplines that considered using cellular au-
tomata for describing and simulating self-reproduction [51].

B. Cell Differentiation and Cellular Functional States

Boolean networks qualitatively reflect the nature of com-
plex adaptive systems in that they are “systems composed of
interacting agents described in terms of rules” [53]. A central
concept in dynamical systems is that ofstructural stability,

3It is interesting to note that similar periodic behavior exists even for some
infinite networks (networks with an infinite number of nodes) [45], such as
those in which every Boolean function is the majority function.

which is the persistent behavior of a system under pertur-
bation. Structural stability formally captures the idea of be-
havior that is not destroyed by small changes to the system.
This is most certainly a property of real genetic networks,
since the cell must be able to maintain homeostasis in me-
tabolism and its developmental program in the face of ex-
ternal perturbations and stimuli. Boolean networks naturally
capture this phenomenon as the system usually “flows” back
into the attractors when some of the genes are perturbed.
Real gene regulatory networks exhibit spontaneous emer-
gence of ordered collective behavior of gene activity. More-
over, recent findings provide experimental evidence for the
existence of attractors in real regulatory networks [26]. At
the same time, Wolf and Eeckman [54] showed that dynam-
ical system behavior and stability of equilibria can be largely
determined from regulatory element organization. This sug-
gests that there must exist certain generic features of regu-
latory networks that are responsible for the inherent robust-
ness and stability. In addition, since there are many different
cell types in multicellular organisms, despite the fact that
each cell contains exactly the same DNA content, the cel-
lular “fate” is determined by which genes are expressed.

This was the insight pursued by Kauffman in his pio-
neering studies of genetic regulatory networks [16], [17],
[20]. The idea was to generate random Boolean networks
with certain properties and then systematically study the
effects of these properties on the global dynamical behavior
of the networks. For example, random Boolean networks
were studied with varying average connectivity and different
classes of Boolean functions, such ascanalizingor forcing
functions.4 “Random” here means that the wiring is random
as are the Boolean functions themselves. Kauffman’s intu-
ition was that the attractors in the Boolean networks should
correspond to cellular types. This interpretation is quite
reasonable if cell types are characterized by stable recurrent
patterns of gene expression.

4A Boolean functionf : f0; 1g ! f0; 1g is calledcanalizingin its ith
input if there existy andz such that for all(x ; x ; . . . ; x ) 2 f0; 1g
with x = y, f(x ; x ; . . . ; x ) = z.
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It is widely believed that complex and adaptable systems
such as the genome operate on the “edge of chaos.” In the
orderedregime, attractors are quite short, few, and stable, the
latter mostly due to the fact that few short attractors imply
large basins of attraction. In addition, the small cycle lengths
imply the existence of largefrozen components, which
are sets of genes that do not change value as the network
progresses through time. There are only isolated islands of
genes that change values, but these cannot “communicate”
or transfer information to each other because of the large
frozen components. Thus, the network is highly resistant
to perturbations (changes in the value of a gene) as well as
wiring mutations (changes to the Boolean functions). It is
unlikely that living systems operate in the ordered regime
because evolution demands that there be some sensitivity to
perturbations and mutations.

On the other hand, in thechaoticregime, the cycle length
of attractors grows exponentially as a function of the number
of genes and a perturbation of a gene propagates to many
other genes, in an avalanche-like manner. Unlike in the or-
dered regime, there are few small islands of frozen genes with
a large proportion of genes exhibiting variation. Thus, net-
works in the chaotic regime are very sensitive to initial con-
ditions and perturbations, implying that organisms cannot be
in the chaotic regime either.

The boundary between order and chaos is called thecom-
plexregime or thecritical phase,as the transition from order
to chaos is a phase transition. In this regime, the number of
attractors and the cycle lengths are proportional to powers of

, where is the total number of genes. As Stuart Kauffman
puts it [56], “a living system must first strike an internal com-
promise between malleability and stability. To survive in a
variable environment, it must be stable to be sure, but not so
stable that it remains forever static.” The complex regime can
be elicited by “tuning” the parameters of a Boolean network,
such as the connectivity , the proportion of functions be-
longing to certain classes, such as canalizing functions, and
the “bias” of the Boolean functions, which is the probability
that the function outputs a 1.

Computer simulations have shown that for networks with
low connectivity ( ) in which every function isunbi-
asedor balanced,that is, when the probability that it takes
the value 1 is 0.5, the number of attractors is approximately

. As the current estimate for the number of genes in the
human genome is almost 40 000, this would imply that there
are roughly 200 different cellular types. It is known that adult
humans have about 254 cell types [55]. It was also shown (see
[20]) that the expected cycle length for a Boolean net-
work is also on the order of . The cyclical nature of the at-
tractors can be equated to the mitotic cycle in cells. It is also
known that the cycle period or the cell doubling time—the
time necessary for a cell to reproduce—is proportional to the
cell’s DNA content [20]. Although higher values of result
in more chaotic networks, the other parameters, such asand
the proportion of canalizing functions, can be tuned such that
the network remains in the critical phase.

In the critical phase, the unfrozen components (genes that
are changing over time) break up into isolated islands, sepa-

rated by frozen components. Thus, there are many genes that
are unfrozen and many that are frozen. As the network goes
around the attractor cycle, representing the cell cycle, those
genes that are unfrozen are presumably the “cell cycle genes”
that are responsible for cell cycle regulation. For example,
recent studies with microarray technology have revealed a
comprehensive catalog of yeast genes whose transcript levels
vary periodically within the cell cycle [57].

Another interpretation of the attractors in Boolean
networks is that they represent cellular states, such aspro-
liferation (cell cycle),apoptosis(programmed cell death),
anddifferentiation(execution of tissue-specific tasks). This
highly appealing view was expounded in [21] and [58] with
ample biological justification. Such an interpretation can
provide new insights into cellular homeostasis and cancer
progression, the latter being characterized by a disbalance
between these cellular states. For instance, if a (structural)
mutation occurs, resulting in a very small probability of
the network entering the apoptosis attractor(s), then the
cells will be unable to undergo apoptosis and will exhibit
uncontrolled growth. Similarly, large basins of attraction for
the proliferation attractor would result in hyperproliferation,
typical of tumorigenesis.

Such an interpretation need not be at odds with the
interpretation that attractors represent cellular types. To
the contrary, these views are complementary to each other,
since, for a given cell type, different cellular functional
states must exist and be determined by collective behavior
of gene activity. Thus, one cell type can comprise several
“neighboring” attractors each of which corresponds to
different cellular functional states [59].

C. Inference: Lessons From Computational Learning
Theory and Nonlinear Signal Processing

Although studying generic properties of large Boolean
networks is quite important for gaining insight into the dy-
namical behavior and organization of real genetic networks,
in order to make progress in understanding the genetic
regulation in specific organisms and develop tools for
rational therapeutic intervention in diseases such as cancer,
it is necessary to be able to identify the networks from real
experimental data. Much recent work on Boolean networks
has focused on identifying the network structure from gene
expression data [60]–[68]. At the same time, a large body of
related work in computational learning theory [10], [69] has
addressed very similar problems, namely, learning or infer-
ring Boolean functions from examples of their input–output
behavior.5 A major focus in this field has been on the
construction of algorithms for the efficient determination
of Boolean formulas from examples. This type of induction
of Boolean logic or the design of Boolean classifiers forms
the core of many data-mining and knowledge-discovery
algorithms [69], [70].

For example, the well-knownconsistency problemrep-
resents a search for a rule from examples [71]–[73]. That

5In a Boolean network, the input and output corresponds to timet and
t + 1.
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is, given some sets and of “true” and “false” vectors,
respectively, the aim is to discover a Boolean function
that takes on the value 1 for all vectors inand the value
0 for all vectors in . It is also commonly assumed that
the target function is chosen from some class of possible
target functions. In the context of Boolean networks, such a
class could be the class of canalizing functions or functions
with a limited number of essential variables. Formally, let

: be called theon-setof
function and let : be the
off-setof . The sets , , define a
partially definedBoolean function as

otherwise.

A function is called anextensionof if and
. The consistency problem (also called the exten-

sion problem) can be posed as: given a classof functions
and two sets and , is there an extension of ?

In reality, a consistent extension may not exist either due
to errors, or more likely, due to a number of underlying latent
factors. This is no doubt the case for gene expression profiles
as measured from microarrays. In this case, we may have to
give up our goal of establishing a consistent extension and
settle for a Boolean formula that minimizes the number of
misclassifications. This problem is known as thebest-fit ex-
tension problem[72] and is formulated as follows. Suppose
we are given positive weights for all vectors
and define for a subset .
Then, theerror sizeof function is defined as

(3)

If for all , then the error size is just
the number of misclassifications. The goal is then to output
subsets and such that and

for which the partially defined Boolean function
has an extension in some class of functionsand so that

is minimum. Consequently, any
extension of has minimum error size. It is
clear that the best-fit extension problem is computationally
more difficult than the consistency problem, since the latter
is a special case of the former, that is, when . In [68],
it was shown that for many function classes, including the
class of all Boolean functions, the best-fit extension problem
for Boolean networks is polynomial-time solvable.

While the focus in computational learning theory has
mostly been on the complexity of learning, very similar
types of problems have been studied in nonlinear signal
processing, specifically, in optimal filter design [74]–[80].
This typically involves designing an estimator from some
predefined class of estimators that minimizes the error of
estimation among all estimators in the class. An important
role in filter design is played by these predefined classes or
constraints. For example, stack filters are represented by the
classofmonotoneBoolean functions.Although itwouldseem
that imposing such constraints can only result in a degradation
of the performance (larger error) relative to the optimal filter

with no imposed constraints, constraining may have certain
advantages. These include prior knowledge of the degra-
dation process (or in the case of gene regulatory networks,
knowledge of the likely class of functions, such as canalizing
functions), tractability of the filter design, and precision of the
estimation procedure by which the optimal filter is estimated
from observations. For example, we often know that a certain
class of filters will provide a very good sub-optimal filter,
while lessening the data requirements for its estimation.

Even in the context of limited data, there are modest ap-
proaches that can be taken. One general statistical approach
is to discover associations between variables via the coeffi-
cient of determination (COD). The COD was introduced in
the context of optimal nonlinear filter design [81], but since
then has been used for inferring multivariate relationships be-
tween genes [82], [83]. Such relationships, referred to aspre-
dictors,are the basic building blocks of a rule-based network.
In the binary case, a predictor is just a Boolean function. The
COD measures the degree to which the expression levels of
an observed gene set can be used to improve the prediction
of the expression of a target gene relative to the best possible
prediction in the absence of observations. The method allows
incorporation of knowledge of other conditions relevant to
the prediction, such as the application of particular stimuli,
or the presence of inactivating gene mutations, as predictive
elements affecting the expression level of a given gene. Using
the COD, one can find sets of genes related multivariately to
a given target gene.

Let us briefly discuss the COD in the context of Boolean
networks. Let be a target gene that we wish to predict
by observing some other genes . Also,
suppose is an optimal predictor of
relative to some error measure. For example, in the case
of mean-square error (MSE) estimation, it is well known
that the optimal predictor is the conditional expectation of

given [84]. Let be the optimal
error achieved by . Then, the COD for relative to

is defined as

(4)

where is the error of the best (constant) estimate ofin
the absence of any conditional variables. It is easily seen that
the COD must be between 0 and 1 and measures the rela-
tive decrease in error from estimatingvia rather than by
just the best constant estimate. In practice, the COD must be
estimated from training data with designed approximations
being used in place of. Those sets of (predictive) genes that
yield the highest COD, compared to all other sets of genes,
are the ones used to construct the optimal predictor of the
target gene. Given limited amounts of training data, it is pru-
dent to constrain the complexity of the predictor by limiting
the number of possible predictive genes that can be used. This
corresponds to limiting the connectivity of the Boolean
network. Although, as discussed above, high values of
are biologically implausible (with no additional assumptions
about the class of Boolean functions), a natural way to in-
corporate more predictive genes, while maintaining simple
predictor design in the face of limited training data, will be
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discussed below. Finally, the above procedure is applied to
all target genes, thus estimating all the functions in a Boolean
network. The method is computationally intensive and mas-
sively parallel architectures have been employed to handle
large gene sets [85].

IV. WHY PROBABILISTIC?

As discussed above, there are really two ways to gain in-
sight about biological systems from Boolean network mod-
eling. The first way is to construct random Boolean networks
and study their general behavior, especially as it relates to
“local” behavior, such as connectivity of genes and classes of
Boolean functions. Such an approach can yield useful knowl-
edge about the generic properties of gene regulatory net-
works and how these relate to cellular types, cell cycle regu-
lation, and other functional cellular states. The second way is
to explicitly infer the specific structure of a Boolean network
from actual gene expression data. This approach has the po-
tential to reveal useful information about the living system
under study, how it fails in disease, and how to rationally
design therapeutic intervention. Let us pursue this approach
further.

In a Boolean network, each (target) gene is “predicted”
by several other genes by means of a Boolean function (pre-
dictor). Thus, after having inferred such a function from gene
expression data, it could be concluded that if we observe
the values of the predictive genes, we know, with full cer-
tainty, the value of the target gene. Conceptually, such an in-
herent determinism seems problematic as it assumes an envi-
ronment with no uncertainty. However, the data used for the
inference exhibits uncertainty on several levels. First, there
is biological uncertainty: gene expression is inherently sto-
chastic, not in the sense that it is totally random, but that
it has a stochastic nature on account of intrinsic biological
variability. Second, there is experimental noise due to the
complex measurement process, ranging from hybridization
conditions to microarray image processing techniques [86].
Third, there may be interacting latent variables, such as pro-
teins, various environmental conditions, or other genes that
we simply do not measure, that further add to the variability
of the measurements. Thus, we are in a position of having to
infer a (deterministic) predictor under uncertainty.

Although reasoning under uncertainty is not a new
problem and has been extensively studied in the artificial
intelligence and pattern recognition communities [87], [88],
it nonetheless presents a problem when the uncertainty
cannot be reliably estimated. Without doing so, we cannot
know how well the designed predictor generalizes over the
population. In other words, we cannot know whether the
predictor that is designed on the sample data will still be
able to reliably make predictions when presented with future
examples. One natural approach to remedy “overfitting”
is to penalize the complexity of the predictor, as simpler
explanations are expected to generalize better than complex
explanations in an inductive reasoning framework. Such an
approach was taken in [89], [90] for Boolean prediction of

gene expression, using the well-known MDL principle as
well as normalized maximum likelihood.

Another approach, proposed in [34], is to “absorb” the
uncertainty into the predictor. The reasoning goes as fol-
lows. Although we cannot reliably estimate the uncertainty
in the data, primarily because we typically have only a lim-
ited number of samples (examples) relative to the number of
genes, we can try to infer a number of simple predictors, each
of which performs relatively well in terms of predicting the
target gene. By simple we mean functions that have only a
few input variables. Having produced a number of simple but
decent predictors, it is then necessary tosynthesizethem to-
gether so that each gets a chance to contribute its own modest
prediction. Such an approach is similar, at least in spirit, to
multiresolution modeling or splines, where rather than fitting
one overly complex model to the data, one fits many simple
models and uses them in a concerted manner.

As described in Section III-C, the COD can be used to pro-
duce a number of good predictors simply by choosing those
sets of (predictive) genes along with the corresponding op-
timal predictors having the highest CODs. Since the COD
itself is estimated from the data, we have little reason to put
all our faith into just one possibly good predictor. Thus, the
approach is to “probabilistically synthesize” the good predic-
tors such that each predictor’s contribution is proportional to
its determinative potential, as measured by the COD. This
idea leads to probabilistic Boolean networks (PBNs).

V. PBNS

A number of additional justifications for introducing
PBNs are contained in [34]. Here, we briefly give their defi-
nition and state several results and possible applications. As
stated above, the basic idea is to combine several promising
predictors or Boolean functions together, so that each can
make a contribution to the prediction of a target gene. A
natural approach is to allow a random selection of the pre-
dictors for a given target gene, with the selection probability
being proportional to the COD of each predictor. That is,
given genes , we assign to each a set

of Boolean functions representing
the “top” predictors for that target gene. Clearly, if
for all , then the PBN simply reduces to a
standard Boolean network. The basic building block of a
PBN is shown in Fig. 4.

Conceptually, the probabilistic predictor of each target
gene can be thought of as a random switch, where at each
point in time or step of the network, the function is

chosen with probability to predict gene . As discussed
above, one way to assign these probabilities is to use the
COD, normalized such that . That is,

where is the COD for gene relative to the genes used

as inputs to predictor .
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Fig. 4. A basic building block of a PBN. Although the “wiring” of the inputs to each function is
shown to be quite general, in practice, each function (predictor) has only a few input variables.

Now consider the network as a whole. Arealization
of the PBN at a given instant of time is determined by
a vector of Boolean functions, where theth element of
that vector contains the predictor selected at that instant
for gene . If there are possible realizations, then
there are vector functions, of the form

, for ,

and where . In
other words, the vector function :
acts as a transition function (mapping) representing a
possible realization of the entire PBN. Such functions are
commonly referred to as multiple-output Boolean functions.
If we assume that the predictor for each gene is chosen
independently of other predictors, then .
More complicated dependent selections are also possible.

Each of the possible realizations can be thought of as
a standard Boolean network that operates for one time step.
In other words, at every state , one of the
Boolean networks is chosen and used to make the transition to
the next state . The probability that the
th (Boolean) network or realization is selected can be easily

expressed in termsof the individual selectionprobabilities
(see [34]). It is also possible to generalize the model such that
the decision to select a new network realization is made with
probability at every time step. In other words, at every time
step, a coin is tossed with probabilityof falling on heads
and if it does, then a new network realization is selected as
described above; otherwise, the current network realization is

used for the next time step. The original definition of PBNs,
as described in [34], corresponds to the case .

Another interpretation of a PBN is that all Boolean net-
works are operating in parallel, but the information about
the state of the whole system is shared by all of them. Thus,
after one of the Boolean networks makes a transition, all the
other Boolean networks are also “synchronized” to that state
such that each of them is “ready” to make the next transition
should it be selected. Very similar ideas have been used in the
analysis of parallel and distributed systems, using so-called
stochastic automata networks[91].

It is easy to see that the state space of a PBN is the same
as of a standard Boolean network. Namely, there are 2pos-
sible states, each represented by a binary vector of length.
The difference is that while in a standard Boolean network,
the transitions are deterministic (i.e., with probability 1), in
a PBN, a state may transition to a number of other states, de-
pending on which realization is selected at that moment.
Thus, the dynamics of a PBN can be modeled by a Markov
chain and we can talk of a Markov chaincorrespondingto
a PBN. However, we should point out that the PBN con-
tains much more information than its corresponding Markov
chain. Another way to say it is that it is possible for two dif-
ferent PBNs, containing different Boolean functions, to pro-
duce the same corresponding Markov chain. Thus, in addi-
tion to Markovian analysis, discussed in Section V-B, there
are other tools that can be developed for studying the inter-
actions of genes in PBNs.
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Fig. 5. An example of influences in a small network containing 15 genes. Each arrow represents
the influence of a gene on another gene. The number next to the arrow is the magnitude of the
influence. Only those influences that are above 0.2 are shown. The influence diagram is just
a weighted directed graph. (The authors are grateful to Dr. R. Hashimoto for implementing the
algorithms to produce this example.)

A. Influence and Sensitivity of Genes

One useful notion is theinfluenceof a gene on another
gene. Given a gene and a predictor for that gene, along with
the genes used to make the prediction, it is important to dis-
tinguish those genes that have a major impact on the predictor
from those that have only a minor impact. In other words,
some genes are more “important” than others in determining
the value of a target gene. Many examples of such biased reg-
ulation of gene expression are known to biologists. For ex-
ample, the cell cycle regulator gene p21/WAF1/cip1 can be
transcriptionally activated by a series of genes p53, smad4,
AP2, BRCA1, and so on [35]. Among those genes, p53 has
the most potent effect.

A good measure should reflect the extent to which a set of
genes is capable of determining the value of the target gene.
Although a number of approaches to measure the relative im-
portance of variables in Boolean functions are possible [92],
we have chosen the following.

The influence of the variable on the function
, with respect to the probability distribution ,

, over the -dimensional hypercube, is defined as

(5)

where is the expectation operator with respect to
distribution ,
is the partial derivative of the Boolean function, the
symbol is addition modulo 2 (exclusiveOR), and

, for .
In other words, (5) gives the influence as the probability
[under the distribution ] that a toggle of theth variable
(gene) changes the value of the function (predictor of the
target gene). In the context of PBNs, the influence of gene

on gene is given by [34]

(6)

Recall that , are the possible predictors
for gene . The influence matrix contains the influences
between every pair of genes: . Fig. 5 shows an
example of influences in a small network consisting of 15
genes, generated in an ongoing project with glioma data.

In an analogous manner, we can define thesensitivityof a
gene as the sum of the influences acting upon it. Biologically,
the sensitivity of a gene represents the stability or, in some
sense, the autonomy of a gene. If the sensitivity of a gene is
low, this implies that other genes have little affect on it. The
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notions of influence and sensitivity can be easily generalized
to sets of genes [34]. That is, we can define the influence of
a set of genes on another set of genes. Typically, we are usu-
ally interested inlong-term influence,which is the influence
computed when the distribution is the steady-state dis-
tribution of the PBN (see Section V-B).

The influence matrix can be considered as an adjacency
matrix of a weighted directed graph. Thus, the calculation
of influences in a PBN can be thought of as a reduction of
the rule-based dynamical model to a static directed graph
structure, studied by some authors as models of gene reg-
ulatory networks [93]. In fact, many other models, such as
Bayesian networks, are closely related to graphs. Indeed,
Bayesian networks are just graphical models that explicitly
represent probabilistic relationships between variables [87].
In [34], a relationship between PBNs and Bayesian networks
was established. Specifically, the basic building blocks of
Bayesian networks—conditional probabilities—can be ex-
plicitly determined in terms of the predictors, their selec-
tion probabilities, and the joint distributions of the predic-
tors’ input variables. Once again, the latter can be computed
in the steady-state.

B. Markovian Analysis

A Markov chain is completely characterized by its state-
transition matrix. For a PBN, this matrix is of size

and the transition probabilities can be explicitly deter-
mined in terms of the selection probabilities and the

Boolean functions [34]. For a given PBN, the corre-
sponding Markov chain may consist of a number ofirre-
duciblesubchains, which are sets of states from which the
chain cannot “escape” once it enters them. Should this be
the case, the long-term behavior of the network would de-
pend on the initial distribution. This notion corresponds to
the concept of attractors in Boolean networks. The attractor
the system enters depends on the starting state. In a similar
fashion, thetransientstates6 in the Markov chain that lead
to irreducible subchains correspond to the basins of attrac-
tion in Boolean networks. Thus, PBNs qualitatively exhibit
the same dynamical properties as Boolean networks, but are
inherently probabilistic. Similar interpretations of cell types
and cellular functional states, as discussed in Section III-B,
can be made for PBNs.

In dynamical systems analysis, the characterization of
long-run behavior is often of prime importance. In the
context of genetic networks, one may wish to know the
long-term joint behavior of a certain group of genes or
the long-term effect of one gene on a group of others. For
example, the robustness or stability of genetic networks
can be characterized by the sensitivity of the long-term
behavior to single-gene perturbations. Let us discuss this
question further, both in the context of gene perturbations
and intervention.

6A transient state is one for which there is a positive probability of never
entering it. Also, the long-run probability of being in such a state is 0.

C. Stochastic Perturbation Analysis

Suppose that a gene can get perturbed with (a small) prob-
ability , independently of other genes. In the Boolean set-
ting, this is represented by a flip of value from 1 to 0 or vice
versa. This idea was already considered by Kauffman and
Levin [94], [20] and corresponds to the bit-flipping mutation
operator inNK landscapes. This also corresponds to the mu-
tation operator in genetic algorithms [95]. This type of “ran-
domization,” namely allowing genes to randomly flip value,
is biologically meaningful. Since the genome is not a closed
system, but rather has inputs from the outside, it is known
that genes may become either activated or inhibited due to ex-
ternal stimuli, such as mutagens, heat stress, etc. Thus, a net-
work model should be able to capture this phenomenon. As
we shall shortly see, there is another, pragmatic, advantage.

Suppose that at every step of the network, we have
a realization of a so-called randomperturbation vector

. If the th component of is equal to 1, then
the th gene is flipped, otherwise it is not. In general,need
not be independent and identically distributed (i.i.d.), but
will be assumed so for simplicity. Thus, we will suppose
that for all . Let

be the state of the network at time. Then,
the next state is given by

with probability

with probability
(7)

where is component-wise addition modulo 2 and
, is the transition function representing a pos-

sible realization of the entire PBN, as discussed above. In
[96], an explicit formulation of the state-transition probabil-
ities in terms of the Boolean functions and the probability of
perturbation , was derived.

It is fairly easy to show [96] that, for , the Markov
chain corresponding to the PBN is ergodic. This means that it
is aperiodic and irreducible. The latter implies that all states
can be reached from all other states and that theoretically,
sooner or later, every state will be visited. Practically, how-
ever, for very small values of, most states will have very
small long-run (steady-state) probabilities. Thus, informally
speaking, the irreducible subchains would become “almost
irreducible” in the sense that the chain would be likely to
stay in them for very long periods of time, but on rare oc-
casions, would escape due to some perturbations. Similarly,
the transient states would become “almost transient” in that
they would be visited extremely rarely. This idea parallels
the situation with standard Boolean networks: if we were to
allow a random perturbation to occur while in an attractor,
most of the time, it would send us to its own basin of attrac-
tion, while occasionally, it may send us to another basin of
attraction that would eventually flow to another attractor. As
discussed earlier, Boolean networks operating in the critical
phase are quite resistant to perturbations, but not that resis-
tant so as to preclude malleability.
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The practical benefit of allowing small perturbations is
that it becomes possible to compute the steady-state distri-
bution of the Markov chain. In other words, the limiting be-
havior of the Markov chain is independent of the initial dis-
tribution. Thus, it also allows us to assess the extent to which
such perturbations affect the long-term behavior of the entire
network.

Using recent results from perturbation theory of stochastic
matrices [97], an explicit bound on the steady-state probabil-
ities was derived in terms of the perturbation probability [96].
In other words, the bound gives a measure of how much the
steady-state probability of a given state can change, in terms
of the perturbation probability. The bound is also given in
terms of themean first-passage times7 to that state. An in-
teresting implication of the result given in [96] is that the
steady-state probabilities of those states of the network to
which it is easy to transition from other states, in terms of
mean first-passage times, are more resilient to random gene
perturbations. In other words, the states of the network that
are more “easily reachable” from other states are more stable
in the presence of gene perturbations. These “stable” sets of
states are hypothesized to correspond to cellular functional
states. The first-passage times provide a conceptual link with
the question of finding the best candidate genes for interven-
tion. We turn to this now.

D. Intervention

As we just discussed, most genetic networks are stable
in the sense that they typically operate in sets of states that
are stable to perturbations. In Boolean networks, this corre-
sponds to a likely return to the attractor; in PBNs, it corre-
sponds to a low sensitivity of the steady-state probabilities.
The ideas are fundamentally the same. Now, let us turn the
problem around. Suppose we wish to elicit certain long-run
behavior from the network. What genes would make the best
candidates for intervention so as to increase the likelihood
of this behavior? That is, suppose that the network is oper-
ating in a certain “undesirable” set of states and we wish to
“persuade” it to transition into a “desirable” set of states by
perturbing some gene. For practical reasons, we may wish to
be able to intervene with as few genes as possible in order
to achieve our goals. Such an approach can expedite the sys-
tematic search and identification of potential drug targets in
cancer therapy.

This question was taken up in [96], where several methods
for finding the best candidate genes for intervention, based on
first-passage times, were developed. The first-passage times
provide a natural way to capture the goals of intervention in
the sense that we wish to transition to certain states (or avoid
certain states, if that is our goal) “as quickly as possible,” or,
alternatively, by maximizing the probability of reaching such
states before a certain time.

Suppose, for example, that we wish to persuade the net-
work to flow into a set of states (irreducible subchain—the

7The mean first-passage time from statex to statey is the expected time
it will take to reachy starting inx.

counterpart of an attractor) representing apoptosis. This
could be very useful, for example, in the case of cancer
cells, which may keep proliferating. We may be able to
achieve this action via the perturbation (intervention) of
severaldifferent genes, but some of them may be better in
the sense that the mean first-passage time to enter apoptosis
is shorter. There are numerous examples in biology when the
(in)activation of one gene can lead much quicker (or with a
higher probability) to a certain cellular functional state or
phenotype than the (in)activation of another gene. Such is
the case with p53 and telomerase genes, for example. In a
stable cancer cell line, when p53 is activated in the cells, for
example, in response to radiation, the cells undergo rapid
growth inhibition and apoptosis in as short as a few hours
[98]. In contrast, inhibition of the telomerase gene also leads
to cell growth inhibition, differentiation, and cell death, but
only after cells go through a number of cell divisions [99],
which takes a longer time to occur than via p53.

The type of intervention described above—one that allows
us to intervene with a gene—can be useful for modulating the
dynamics of the network, but it is not able to alter the under-
lying structure of the network. Accordingly, the steady-state
distribution remains unchanged. However, a disbalance be-
tween certain sets of states, which is characteristic of neo-
plasia in view of gene regulatory networks, can be caused by
mutations of the “wiring” of certain genes, thus permanently
altering the state-transition structure and, consequently, the
long-run behavior of the network [21].

Therefore, it is prudent to develop a methodology for
altering the steady-state probabilities of certain states or
sets of states with minimal modifications to the rule-based
structure. The motivation is that these states may represent
different phenotypes or cellular functional states, such as
cell invasion and quiescence, and we would like to decrease
the probability that the whole network will end up in an
undesirable set of states and increase the probability that
it will end up in a desirable set of states. One mechanism
by which we can accomplish this consists of altering some
Boolean functions (predictors) in the PBN. For practical
reasons, as above, we may wish to alter as few functions as
possible. Such alterations to the rules of regulation may be
possible by the introduction of a factor or drug that alters
the extant behavior.

In [100], a methodology for altering the steady-state prob-
abilities of certain states or sets of states, with minimal
modifications to the underlying rule-based structure, was
developed. This approach was framed as an optimization
problem that can be solved using genetic algorithms (GA),
which are well suited for capturing the underlying struc-
ture of PBNs and are able to locate the optimal solution in
a highly efficient manner. For example, in some computer
simulations that were performed, the genetic algorithm was
able to locate the optimal solution (structural alteration) in
only 200 steps (evaluations of the fitness function), out of
a total of 21 billion possibilities, which is the number of
steps a brute-force approach would have to take. The reason
for such high efficiency of the genetic algorithm is due to
the embedded structure in the PBN that can be exploited.
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The use of genetic algorithms for modifying the structure of
Boolean networks has recently been studied, in the context
of evolution [101], [102].

VI. CONCLUDING REMARKS

The paper contains an overview of Boolean and prob-
abilistic Boolean modeling of genetic networks. It is not
meant to be exhaustive and only presents a selection of
topics that may be of interest to the engineering, computer
science, and mathematics community. Those readers that
wish to dig deeper into the mathematics behind Boolean
networks can consult a number of good papers in the physics
literature. Kauffman’s book [20] is also an excellent starting
point. PBNs also present many interesting and challenging
problems. A fascinating aspect of the research on PBNs is
that it involves and spans so many fields and topics, such as
random processes, estimation, optimization, control, parallel
and distributed systems, computational learning theory, and
signal processing, just to name a few.

Some of the current topics of research involve the design of
fast, scalable inference algorithms and the associated study
of robustness and complexity. Also under development are
various approaches for constructing subnetworks of genes,
using influences and sensitivities. For steady-state analysis, a
number of methods for convergence analysis for Monte Carlo
simulation of PBNs are under investigation.
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